Yiqun Chen, Xiao Liu, Ji Young L. Anderson, Harnish Mukesh Naik, Venkata Gayatri Dhara, Xiaolu Chen, Glenn A. Harris, Michael J. Betenbaugh
{"title":"控制CHO细胞培养中必需氨基酸水平的基因组级营养最小化预测算法","authors":"Yiqun Chen, Xiao Liu, Ji Young L. Anderson, Harnish Mukesh Naik, Venkata Gayatri Dhara, Xiaolu Chen, Glenn A. Harris, Michael J. Betenbaugh","doi":"10.1002/bit.27994","DOIUrl":null,"url":null,"abstract":"<p>Mammalian cell culture processes rely heavily on empirical knowledge in which process control remains a challenge due to the limited characterization/understanding of cell metabolism and inability to predict the cell behaviors. This study facilitates control of Chinese hamster ovary (CHO) processes through a forecast-based feeding approach that predicts multiple essential amino acids levels in the culture from easily acquired viable cell density data. Multiple cell growth behavior forecast extrapolation approaches are considered with logistic curve fitting found to be the most effective. Next, the nutrient-minimized CHO genome-scale model is combined with the growth forecast model to generate essential amino acid forecast profiles of multiple CHO batch cultures. Comparison of the forecast with the measurements suggests that this algorithm can accurately predict the concentration of most essential amino acids from cell density measurement with error mitigated by incorporating off-line amino acids concentration measurements. Finally, the forecast algorithm is applied to CHO fed-batch cultures to support amino acid feeding control to control the concentration of essential amino acids below 1–2 mM for lysine, leucine, and valine as a model over a 9-day fed batch culture while maintaining comparable growth behavior to an empirical-based culture. In turn, glycine production was elevated, alanine reduced and lactate production slightly lower in control cultures due to metabolic shifts in branched-chain amino acid degradation. With the advantage of requiring minimal measurement inputs while providing valuable and in-advance information of the system based on growth measurements, this genome model-based amino acid forecast algorithm represent a powerful and cost-effective tool to facilitate enhanced control over CHO and other mammalian cell-based bioprocesses.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"119 2","pages":"435-451"},"PeriodicalIF":3.5000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A genome-scale nutrient minimization forecast algorithm for controlling essential amino acid levels in CHO cell cultures\",\"authors\":\"Yiqun Chen, Xiao Liu, Ji Young L. Anderson, Harnish Mukesh Naik, Venkata Gayatri Dhara, Xiaolu Chen, Glenn A. Harris, Michael J. Betenbaugh\",\"doi\":\"10.1002/bit.27994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mammalian cell culture processes rely heavily on empirical knowledge in which process control remains a challenge due to the limited characterization/understanding of cell metabolism and inability to predict the cell behaviors. This study facilitates control of Chinese hamster ovary (CHO) processes through a forecast-based feeding approach that predicts multiple essential amino acids levels in the culture from easily acquired viable cell density data. Multiple cell growth behavior forecast extrapolation approaches are considered with logistic curve fitting found to be the most effective. Next, the nutrient-minimized CHO genome-scale model is combined with the growth forecast model to generate essential amino acid forecast profiles of multiple CHO batch cultures. Comparison of the forecast with the measurements suggests that this algorithm can accurately predict the concentration of most essential amino acids from cell density measurement with error mitigated by incorporating off-line amino acids concentration measurements. Finally, the forecast algorithm is applied to CHO fed-batch cultures to support amino acid feeding control to control the concentration of essential amino acids below 1–2 mM for lysine, leucine, and valine as a model over a 9-day fed batch culture while maintaining comparable growth behavior to an empirical-based culture. In turn, glycine production was elevated, alanine reduced and lactate production slightly lower in control cultures due to metabolic shifts in branched-chain amino acid degradation. With the advantage of requiring minimal measurement inputs while providing valuable and in-advance information of the system based on growth measurements, this genome model-based amino acid forecast algorithm represent a powerful and cost-effective tool to facilitate enhanced control over CHO and other mammalian cell-based bioprocesses.</p>\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"119 2\",\"pages\":\"435-451\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bit.27994\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.27994","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A genome-scale nutrient minimization forecast algorithm for controlling essential amino acid levels in CHO cell cultures
Mammalian cell culture processes rely heavily on empirical knowledge in which process control remains a challenge due to the limited characterization/understanding of cell metabolism and inability to predict the cell behaviors. This study facilitates control of Chinese hamster ovary (CHO) processes through a forecast-based feeding approach that predicts multiple essential amino acids levels in the culture from easily acquired viable cell density data. Multiple cell growth behavior forecast extrapolation approaches are considered with logistic curve fitting found to be the most effective. Next, the nutrient-minimized CHO genome-scale model is combined with the growth forecast model to generate essential amino acid forecast profiles of multiple CHO batch cultures. Comparison of the forecast with the measurements suggests that this algorithm can accurately predict the concentration of most essential amino acids from cell density measurement with error mitigated by incorporating off-line amino acids concentration measurements. Finally, the forecast algorithm is applied to CHO fed-batch cultures to support amino acid feeding control to control the concentration of essential amino acids below 1–2 mM for lysine, leucine, and valine as a model over a 9-day fed batch culture while maintaining comparable growth behavior to an empirical-based culture. In turn, glycine production was elevated, alanine reduced and lactate production slightly lower in control cultures due to metabolic shifts in branched-chain amino acid degradation. With the advantage of requiring minimal measurement inputs while providing valuable and in-advance information of the system based on growth measurements, this genome model-based amino acid forecast algorithm represent a powerful and cost-effective tool to facilitate enhanced control over CHO and other mammalian cell-based bioprocesses.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.