{"title":"一种新的贝叶斯方法用于家族数据的QTL映射。","authors":"Daiane Aparecida Zuanetti, Luis Aparecido Milan","doi":"10.1142/S021972002150030X","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a new Bayesian approach for QTL mapping of family data. The main purpose is to model a phenotype as a function of QTLs' effects. The model considers the detailed familiar dependence and it does not rely on random effects. It combines the probability for Mendelian inheritance of parents' genotype and the correlation between flanking markers and QTLs. This is an advance when compared with models which use only Mendelian segregation or only the correlation between markers and QTLs to estimate transmission probabilities. We use the Bayesian approach to estimate the number of QTLs, their location and the additive and dominance effects. We compare the performance of the proposed method with variance component and LASSO models using simulated and GAW17 data sets. Under tested conditions, the proposed method outperforms other methods in aspects such as estimating the number of QTLs, the accuracy of the QTLs' position and the estimate of their effects. The results of the application of the proposed method to data sets exceeded all of our expectations.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"20 1","pages":"2150030"},"PeriodicalIF":0.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new Bayesian approach for QTL mapping of family data.\",\"authors\":\"Daiane Aparecida Zuanetti, Luis Aparecido Milan\",\"doi\":\"10.1142/S021972002150030X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a new Bayesian approach for QTL mapping of family data. The main purpose is to model a phenotype as a function of QTLs' effects. The model considers the detailed familiar dependence and it does not rely on random effects. It combines the probability for Mendelian inheritance of parents' genotype and the correlation between flanking markers and QTLs. This is an advance when compared with models which use only Mendelian segregation or only the correlation between markers and QTLs to estimate transmission probabilities. We use the Bayesian approach to estimate the number of QTLs, their location and the additive and dominance effects. We compare the performance of the proposed method with variance component and LASSO models using simulated and GAW17 data sets. Under tested conditions, the proposed method outperforms other methods in aspects such as estimating the number of QTLs, the accuracy of the QTLs' position and the estimate of their effects. The results of the application of the proposed method to data sets exceeded all of our expectations.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"20 1\",\"pages\":\"2150030\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S021972002150030X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S021972002150030X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A new Bayesian approach for QTL mapping of family data.
In this paper, we propose a new Bayesian approach for QTL mapping of family data. The main purpose is to model a phenotype as a function of QTLs' effects. The model considers the detailed familiar dependence and it does not rely on random effects. It combines the probability for Mendelian inheritance of parents' genotype and the correlation between flanking markers and QTLs. This is an advance when compared with models which use only Mendelian segregation or only the correlation between markers and QTLs to estimate transmission probabilities. We use the Bayesian approach to estimate the number of QTLs, their location and the additive and dominance effects. We compare the performance of the proposed method with variance component and LASSO models using simulated and GAW17 data sets. Under tested conditions, the proposed method outperforms other methods in aspects such as estimating the number of QTLs, the accuracy of the QTLs' position and the estimate of their effects. The results of the application of the proposed method to data sets exceeded all of our expectations.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.