黄脾醇D通过TLR4-MAPKs/NF-κB信号通路抑制氧化应激、炎症和凋亡,保护小鼠免受lps诱导的急性肺损伤。

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Innate Immunity Pub Date : 2021-10-01 Epub Date: 2021-11-20 DOI:10.1177/17534259211051069
Qinqin Zhang, Aozi Feng, Mengnan Zeng, Beibei Zhang, Jingya Shi, Yaxin Lv, Bing Cao, Chenxin Zhao, Mengya Wang, Yifan Ding, Xiaoke Zheng
{"title":"黄脾醇D通过TLR4-MAPKs/NF-κB信号通路抑制氧化应激、炎症和凋亡,保护小鼠免受lps诱导的急性肺损伤。","authors":"Qinqin Zhang,&nbsp;Aozi Feng,&nbsp;Mengnan Zeng,&nbsp;Beibei Zhang,&nbsp;Jingya Shi,&nbsp;Yaxin Lv,&nbsp;Bing Cao,&nbsp;Chenxin Zhao,&nbsp;Mengya Wang,&nbsp;Yifan Ding,&nbsp;Xiaoke Zheng","doi":"10.1177/17534259211051069","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effect and mechanism of chrysosplenol D (CD) on LPS-induced acute lung injury in mice. Histological changes in the lungs were measured by hematoxylin-eosin staining. The levels of IL-6, IL-1β, and TNF-α in the bronchoalveolar lavage fluid were detected by ELISA. The levels of oxidative stress were detected by the cuvette assay. Immune cells in peripheral blood, the levels of reactive oxygen species, and apoptosis of primary lung cells were detected by flow cytometry. The mRNA levels of TLR4, MyD88, IL-1β, and NLRP3 were measured by quantitative real-time polymerase chain reaction. The levels of proteins in apoptosis and the TLR4-MAPKs/NF-κB signaling pathways were detected by Western blot. Hematoxylin-eosin staining showed that CD could improve lung injury; decrease the levels of inflammatory factors, oxidative stress, reactive oxygen species, and cell apoptosis; and regulate the immune system. Moreover, CD could down-regulate the mRNA levels of TLR4, MyD88, NLRP3, and IL-1β in lung, and the protein levels of Keap-1, Cleaved-Caspase-3/Caspase-3, Cleaved-Caspase-9/Caspase-9, TLR4, MyD88, p-ERK/ERK, p-JNK/JNK, p-p38/p38, p-p65/p65, NLRP3, and IL-1β, and up-regulated the levels of Bcl-2/Bax, p-Nrf2/Nrf2, and HO-1. The results suggested that CD could protect mice against LPS-induced acute lung injury by inhibiting oxidative stress, inflammation, and apoptosis via the TLR4-MAPKs/NF-κB signaling pathways.</p>","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/89/10.1177_17534259211051069.PMC8762090.pdf","citationCount":"10","resultStr":"{\"title\":\"Chrysosplenol D protects mice against LPS-induced acute lung injury by inhibiting oxidative stress, inflammation, and apoptosis via TLR4-MAPKs/NF-κB signaling pathways.\",\"authors\":\"Qinqin Zhang,&nbsp;Aozi Feng,&nbsp;Mengnan Zeng,&nbsp;Beibei Zhang,&nbsp;Jingya Shi,&nbsp;Yaxin Lv,&nbsp;Bing Cao,&nbsp;Chenxin Zhao,&nbsp;Mengya Wang,&nbsp;Yifan Ding,&nbsp;Xiaoke Zheng\",\"doi\":\"10.1177/17534259211051069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the effect and mechanism of chrysosplenol D (CD) on LPS-induced acute lung injury in mice. Histological changes in the lungs were measured by hematoxylin-eosin staining. The levels of IL-6, IL-1β, and TNF-α in the bronchoalveolar lavage fluid were detected by ELISA. The levels of oxidative stress were detected by the cuvette assay. Immune cells in peripheral blood, the levels of reactive oxygen species, and apoptosis of primary lung cells were detected by flow cytometry. The mRNA levels of TLR4, MyD88, IL-1β, and NLRP3 were measured by quantitative real-time polymerase chain reaction. The levels of proteins in apoptosis and the TLR4-MAPKs/NF-κB signaling pathways were detected by Western blot. Hematoxylin-eosin staining showed that CD could improve lung injury; decrease the levels of inflammatory factors, oxidative stress, reactive oxygen species, and cell apoptosis; and regulate the immune system. Moreover, CD could down-regulate the mRNA levels of TLR4, MyD88, NLRP3, and IL-1β in lung, and the protein levels of Keap-1, Cleaved-Caspase-3/Caspase-3, Cleaved-Caspase-9/Caspase-9, TLR4, MyD88, p-ERK/ERK, p-JNK/JNK, p-p38/p38, p-p65/p65, NLRP3, and IL-1β, and up-regulated the levels of Bcl-2/Bax, p-Nrf2/Nrf2, and HO-1. The results suggested that CD could protect mice against LPS-induced acute lung injury by inhibiting oxidative stress, inflammation, and apoptosis via the TLR4-MAPKs/NF-κB signaling pathways.</p>\",\"PeriodicalId\":13676,\"journal\":{\"name\":\"Innate Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/89/10.1177_17534259211051069.PMC8762090.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innate Immunity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/17534259211051069\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/17534259211051069","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 10

摘要

本研究探讨了温脾酚D(CD)对LPS诱导的小鼠急性肺损伤的影响及其机制。通过苏木精-伊红染色测量肺的组织学变化。ELISA法检测支气管肺泡灌洗液中IL-6、IL-1β和TNF-α的水平。通过比色皿测定法检测氧化应激水平。流式细胞术检测外周血免疫细胞、活性氧水平和原代肺细胞凋亡。通过实时定量聚合酶链反应测定TLR4、MyD88、IL-1β和NLRP3的mRNA水平。Western印迹法检测细胞凋亡蛋白水平和TLR4 MAPKs/NF-κB信号通路。苏木精-伊红染色显示CD可改善肺损伤;降低炎症因子、氧化应激、活性氧和细胞凋亡的水平;并调节免疫系统。此外,CD可下调肺组织中TLR4、MyD88、NLRP3和IL-1β的mRNA水平,以及Keap-1、Cleaved-Caspase-3/Caspase-3、Cleaved-Caspase-9/Caspase-9、TLR4、MyD88、p-ERK/ERK、p-JNK/JNK、p-p38/p38、p-p65/p65、NLRP3-和IL-1α的蛋白水平,并上调Bcl-2/Bax、p-Nrf2/Nrf2和HO-1的水平。结果表明,CD可以通过TLR4 MAPKs/NF-κB信号通路抑制氧化应激、炎症和细胞凋亡,从而保护小鼠免受LPS诱导的急性肺损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chrysosplenol D protects mice against LPS-induced acute lung injury by inhibiting oxidative stress, inflammation, and apoptosis via TLR4-MAPKs/NF-κB signaling pathways.

Chrysosplenol D protects mice against LPS-induced acute lung injury by inhibiting oxidative stress, inflammation, and apoptosis via TLR4-MAPKs/NF-κB signaling pathways.

Chrysosplenol D protects mice against LPS-induced acute lung injury by inhibiting oxidative stress, inflammation, and apoptosis via TLR4-MAPKs/NF-κB signaling pathways.

Chrysosplenol D protects mice against LPS-induced acute lung injury by inhibiting oxidative stress, inflammation, and apoptosis via TLR4-MAPKs/NF-κB signaling pathways.

This study investigated the effect and mechanism of chrysosplenol D (CD) on LPS-induced acute lung injury in mice. Histological changes in the lungs were measured by hematoxylin-eosin staining. The levels of IL-6, IL-1β, and TNF-α in the bronchoalveolar lavage fluid were detected by ELISA. The levels of oxidative stress were detected by the cuvette assay. Immune cells in peripheral blood, the levels of reactive oxygen species, and apoptosis of primary lung cells were detected by flow cytometry. The mRNA levels of TLR4, MyD88, IL-1β, and NLRP3 were measured by quantitative real-time polymerase chain reaction. The levels of proteins in apoptosis and the TLR4-MAPKs/NF-κB signaling pathways were detected by Western blot. Hematoxylin-eosin staining showed that CD could improve lung injury; decrease the levels of inflammatory factors, oxidative stress, reactive oxygen species, and cell apoptosis; and regulate the immune system. Moreover, CD could down-regulate the mRNA levels of TLR4, MyD88, NLRP3, and IL-1β in lung, and the protein levels of Keap-1, Cleaved-Caspase-3/Caspase-3, Cleaved-Caspase-9/Caspase-9, TLR4, MyD88, p-ERK/ERK, p-JNK/JNK, p-p38/p38, p-p65/p65, NLRP3, and IL-1β, and up-regulated the levels of Bcl-2/Bax, p-Nrf2/Nrf2, and HO-1. The results suggested that CD could protect mice against LPS-induced acute lung injury by inhibiting oxidative stress, inflammation, and apoptosis via the TLR4-MAPKs/NF-κB signaling pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Innate Immunity
Innate Immunity 生物-免疫学
CiteScore
7.20
自引率
0.00%
发文量
20
审稿时长
6-12 weeks
期刊介绍: Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信