多面体Novikov同调。

Alessio Pellegrini
{"title":"多面体Novikov同调。","authors":"Alessio Pellegrini","doi":"10.1007/s11784-021-00899-5","DOIUrl":null,"url":null,"abstract":"<p><p>Let <i>M</i> be a closed manifold and <math><mrow><mi>A</mi> <mo>⊆</mo> <msubsup><mi>H</mi> <mi>dR</mi> <mn>1</mn></msubsup> <mrow><mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> </mrow> </math> a polytope. For each <math><mrow><mi>a</mi> <mo>∈</mo> <mi>A</mi></mrow> </math> , we define a Novikov chain complex with a multiple finiteness condition encoded by the polytope <math><mi>A</mi></math> . The resulting polytope Novikov homology generalizes the ordinary Novikov homology. We prove that any two cohomology classes in a prescribed polytope give rise to chain homotopy equivalent polytope Novikov complexes over a Novikov ring associated with said polytope. As applications, we present a novel approach to the (twisted) Novikov Morse Homology Theorem and prove a new polytope Novikov Principle. The latter generalizes the ordinary Novikov Principle and a recent result of Pajitnov in the abelian case.</p>","PeriodicalId":93461,"journal":{"name":"Journal of fixed point theory and Its applications","volume":"23 4","pages":"62"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591789/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polytope Novikov homology.\",\"authors\":\"Alessio Pellegrini\",\"doi\":\"10.1007/s11784-021-00899-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <i>M</i> be a closed manifold and <math><mrow><mi>A</mi> <mo>⊆</mo> <msubsup><mi>H</mi> <mi>dR</mi> <mn>1</mn></msubsup> <mrow><mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> </mrow> </math> a polytope. For each <math><mrow><mi>a</mi> <mo>∈</mo> <mi>A</mi></mrow> </math> , we define a Novikov chain complex with a multiple finiteness condition encoded by the polytope <math><mi>A</mi></math> . The resulting polytope Novikov homology generalizes the ordinary Novikov homology. We prove that any two cohomology classes in a prescribed polytope give rise to chain homotopy equivalent polytope Novikov complexes over a Novikov ring associated with said polytope. As applications, we present a novel approach to the (twisted) Novikov Morse Homology Theorem and prove a new polytope Novikov Principle. The latter generalizes the ordinary Novikov Principle and a recent result of Pajitnov in the abelian case.</p>\",\"PeriodicalId\":93461,\"journal\":{\"name\":\"Journal of fixed point theory and Its applications\",\"volume\":\"23 4\",\"pages\":\"62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591789/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of fixed point theory and Its applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11784-021-00899-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fixed point theory and Its applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11784-021-00899-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设M为一个封闭流形,a≤H≤dR 1 (M)为一个多面体。对于每个a∈a,我们定义了一个由多面体a编码的具有多重有限条件的Novikov链复形。由此得到的多面体诺维科夫同调推广了普通诺维科夫同调。证明了给定多面体上任意两个上同类在与该多面体相关的Novikov环上产生链同伦等价多面体Novikov配合物。作为应用,我们给出了(扭曲)Novikov Morse同调定理的一种新方法,并证明了一个新的多面体Novikov原理。后者推广了普通的诺维科夫原理和Pajitnov在阿贝尔情况下的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polytope Novikov homology.

Polytope Novikov homology.

Polytope Novikov homology.

Polytope Novikov homology.

Let M be a closed manifold and A H dR 1 ( M ) a polytope. For each a A , we define a Novikov chain complex with a multiple finiteness condition encoded by the polytope A . The resulting polytope Novikov homology generalizes the ordinary Novikov homology. We prove that any two cohomology classes in a prescribed polytope give rise to chain homotopy equivalent polytope Novikov complexes over a Novikov ring associated with said polytope. As applications, we present a novel approach to the (twisted) Novikov Morse Homology Theorem and prove a new polytope Novikov Principle. The latter generalizes the ordinary Novikov Principle and a recent result of Pajitnov in the abelian case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信