{"title":"改变ph敏感的PCSK9/LDLR相互作用作为增强肝细胞对低密度脂蛋白胆固醇(LDL-C)摄取的策略","authors":"Lital Ben-Naim, Isam Khalaila, Niv Papo","doi":"10.1093/protein/gzab032","DOIUrl":null,"url":null,"abstract":"<p><p>LDL-receptor (LDLR)-mediated uptake of LDL-C into hepatocytes is impaired by lysosomal degradation of LDLR, which is promoted by proprotein convertase subtilisin/kexin type 9 (PCSK9). Cell surface binding of PCSK9 to LDLR produces a complex that translocates to an endosome, where the acidic pH strengthens the binding affinity of PCSK9 to LDLR, preventing LDLR recycling to the cell membrane. We present a new approach to inhibit PCSK9-mediated LDLR degradation, namely, targeting the PCSK9/LDLR interface with a PCSK9-antagonist, designated Flag-PCSK9PH, which prevents access of WT PCSK9 to LDLR. In HepG2 cells, Flag-PCSK9PH, a truncated version (residues 53-451) of human WT PCSK9, strongly bound LDLR at the neutral pH of the cell surface but dissociated from it in the endosome (acidic pH), allowing LDLR to exit the lysosomes intact and recycle to the cell membrane. Flag-PCSK9PH thus significantly enhanced cell-surface LDLR levels and the ability of LDLR to take up extracellular LDL-C.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modifying pH-sensitive PCSK9/LDLR interactions as a strategy to enhance hepatic cell uptake of low-density lipoprotein cholesterol (LDL-C).\",\"authors\":\"Lital Ben-Naim, Isam Khalaila, Niv Papo\",\"doi\":\"10.1093/protein/gzab032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>LDL-receptor (LDLR)-mediated uptake of LDL-C into hepatocytes is impaired by lysosomal degradation of LDLR, which is promoted by proprotein convertase subtilisin/kexin type 9 (PCSK9). Cell surface binding of PCSK9 to LDLR produces a complex that translocates to an endosome, where the acidic pH strengthens the binding affinity of PCSK9 to LDLR, preventing LDLR recycling to the cell membrane. We present a new approach to inhibit PCSK9-mediated LDLR degradation, namely, targeting the PCSK9/LDLR interface with a PCSK9-antagonist, designated Flag-PCSK9PH, which prevents access of WT PCSK9 to LDLR. In HepG2 cells, Flag-PCSK9PH, a truncated version (residues 53-451) of human WT PCSK9, strongly bound LDLR at the neutral pH of the cell surface but dissociated from it in the endosome (acidic pH), allowing LDLR to exit the lysosomes intact and recycle to the cell membrane. Flag-PCSK9PH thus significantly enhanced cell-surface LDLR levels and the ability of LDLR to take up extracellular LDL-C.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzab032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzab032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
摘要
低密度脂蛋白受体(LDLR)介导的LDL-C进入肝细胞的摄取被LDLR的溶酶体降解所破坏,这种降解是由蛋白转化酶subtilisin/ keexin type 9 (PCSK9)促进的。PCSK9与LDLR的细胞表面结合产生一种复合体,该复合体易位到内体,酸性pH值增强PCSK9与LDLR的结合亲和力,阻止LDLR再循环到细胞膜。我们提出了一种抑制PCSK9介导的LDLR降解的新方法,即用PCSK9拮抗剂Flag-PCSK9PH靶向PCSK9/LDLR界面,阻止WT PCSK9接近LDLR。在HepG2细胞中,人WT PCSK9的截断版本(残基53-451)Flag-PCSK9PH在细胞表面的中性pH下与LDLR强结合,但在内体(酸性pH)中与LDLR分离,使LDLR完整地离开溶酶体并再循环到细胞膜。因此,Flag-PCSK9PH显著提高了细胞表面LDLR水平和LDLR吸收细胞外LDL-C的能力。
Modifying pH-sensitive PCSK9/LDLR interactions as a strategy to enhance hepatic cell uptake of low-density lipoprotein cholesterol (LDL-C).
LDL-receptor (LDLR)-mediated uptake of LDL-C into hepatocytes is impaired by lysosomal degradation of LDLR, which is promoted by proprotein convertase subtilisin/kexin type 9 (PCSK9). Cell surface binding of PCSK9 to LDLR produces a complex that translocates to an endosome, where the acidic pH strengthens the binding affinity of PCSK9 to LDLR, preventing LDLR recycling to the cell membrane. We present a new approach to inhibit PCSK9-mediated LDLR degradation, namely, targeting the PCSK9/LDLR interface with a PCSK9-antagonist, designated Flag-PCSK9PH, which prevents access of WT PCSK9 to LDLR. In HepG2 cells, Flag-PCSK9PH, a truncated version (residues 53-451) of human WT PCSK9, strongly bound LDLR at the neutral pH of the cell surface but dissociated from it in the endosome (acidic pH), allowing LDLR to exit the lysosomes intact and recycle to the cell membrane. Flag-PCSK9PH thus significantly enhanced cell-surface LDLR levels and the ability of LDLR to take up extracellular LDL-C.