{"title":"具有部分结构和部分随机相互作用的复杂流体的不稳定性。","authors":"Giorgio Carugno, Izaak Neri, Pierpaolo Vivo","doi":"10.1088/1478-3975/ac55f9","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a theory for thermodynamic instabilities of complex fluids composed of many interacting chemical species organised in families. This model includes partially structured and partially random interactions and can be solved exactly using tools from random matrix theory. The model exhibits three kinds of fluid instabilities: one in which the species form a condensate with a local density that depends on their family (family condensation); one in which species demix in two phases depending on their family (family demixing); and one in which species demix in a random manner irrespective of their family (random demixing). We determine the critical spinodal density of the three types of instabilities and find that the critical spinodal density is finite for both family condensation and family demixing, while for random demixing the critical spinodal density grows as the square root of the number of species. We use the developed framework to describe phase-separation instability of the cytoplasm induced by a change in pH.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Instabilities of complex fluids with partially structured and partially random interactions.\",\"authors\":\"Giorgio Carugno, Izaak Neri, Pierpaolo Vivo\",\"doi\":\"10.1088/1478-3975/ac55f9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We develop a theory for thermodynamic instabilities of complex fluids composed of many interacting chemical species organised in families. This model includes partially structured and partially random interactions and can be solved exactly using tools from random matrix theory. The model exhibits three kinds of fluid instabilities: one in which the species form a condensate with a local density that depends on their family (family condensation); one in which species demix in two phases depending on their family (family demixing); and one in which species demix in a random manner irrespective of their family (random demixing). We determine the critical spinodal density of the three types of instabilities and find that the critical spinodal density is finite for both family condensation and family demixing, while for random demixing the critical spinodal density grows as the square root of the number of species. We use the developed framework to describe phase-separation instability of the cytoplasm induced by a change in pH.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/ac55f9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ac55f9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Instabilities of complex fluids with partially structured and partially random interactions.
We develop a theory for thermodynamic instabilities of complex fluids composed of many interacting chemical species organised in families. This model includes partially structured and partially random interactions and can be solved exactly using tools from random matrix theory. The model exhibits three kinds of fluid instabilities: one in which the species form a condensate with a local density that depends on their family (family condensation); one in which species demix in two phases depending on their family (family demixing); and one in which species demix in a random manner irrespective of their family (random demixing). We determine the critical spinodal density of the three types of instabilities and find that the critical spinodal density is finite for both family condensation and family demixing, while for random demixing the critical spinodal density grows as the square root of the number of species. We use the developed framework to describe phase-separation instability of the cytoplasm induced by a change in pH.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.