{"title":"分离变量中的 Diophantine方程和多项式幂和。","authors":"Clemens Fuchs, Sebastian Heintze","doi":"10.1007/s00605-021-01560-6","DOIUrl":null,"url":null,"abstract":"<p><p>We consider Diophantine equations of the shape <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>=</mo> <mi>g</mi> <mo>(</mo> <mi>y</mi> <mo>)</mo></mrow> </math> , where the polynomials <i>f</i> and <i>g</i> are elements of power sums. Using a finiteness criterion of Bilu and Tichy, we will prove that under suitable assumptions infinitely many rational solutions (<i>x</i>, <i>y</i>) with a bounded denominator are only possible in trivial cases.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550583/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diophantine equations in separated variables and polynomial power sums.\",\"authors\":\"Clemens Fuchs, Sebastian Heintze\",\"doi\":\"10.1007/s00605-021-01560-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider Diophantine equations of the shape <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>=</mo> <mi>g</mi> <mo>(</mo> <mi>y</mi> <mo>)</mo></mrow> </math> , where the polynomials <i>f</i> and <i>g</i> are elements of power sums. Using a finiteness criterion of Bilu and Tichy, we will prove that under suitable assumptions infinitely many rational solutions (<i>x</i>, <i>y</i>) with a bounded denominator are only possible in trivial cases.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550583/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-021-01560-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-021-01560-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑 f ( x ) = g ( y ) 形状的二叉方程,其中多项式 f 和 g 是幂和的元素。我们将利用比鲁和蒂奇的有限性准则证明,在适当的假设条件下,分母有界的无穷多个有理解 (x, y) 只可能在微不足道的情况下出现。
Diophantine equations in separated variables and polynomial power sums.
We consider Diophantine equations of the shape , where the polynomials f and g are elements of power sums. Using a finiteness criterion of Bilu and Tichy, we will prove that under suitable assumptions infinitely many rational solutions (x, y) with a bounded denominator are only possible in trivial cases.