Yan-Ru Guo, Yan-Qin Bai, Chun-Na Li, Lan Bai, Yuan-Hai Shao
{"title":"二维Bhattacharyya界线性判别分析及其应用","authors":"Yan-Ru Guo, Yan-Qin Bai, Chun-Na Li, Lan Bai, Yuan-Hai Shao","doi":"10.1007/s10489-021-02843-z","DOIUrl":null,"url":null,"abstract":"<div><p>The recently proposed L2-norm linear discriminant analysis criterion based on Bhattacharyya error bound estimation (L2BLDA) was an effective improvement over linear discriminant analysis (LDA) and was used to handle vector input samples. When faced with two-dimensional (2D) inputs, such as images, converting two-dimensional data to vectors, regardless of the inherent structure of the image, may result in some loss of useful information. In this paper, we propose a novel two-dimensional Bhattacharyya bound linear discriminant analysis (2DBLDA). 2DBLDA maximizes the matrix-based between-class distance, which is measured by the weighted pairwise distances of class means and minimizes the matrix-based within-class distance. The criterion of 2DBLDA is equivalent to optimizing the upper bound of the Bhattacharyya error. The weighting constant between the between-class and within-class terms is determined by the involved data that make the proposed 2DBLDA adaptive. The construction of 2DBLDA avoids the small sample size (SSS) problem, is robust, and can be solved through a simple standard eigenvalue decomposition problem. The experimental results on image recognition and face image reconstruction demonstrate the effectiveness of 2DBLDA.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"52 8","pages":"8793 - 8809"},"PeriodicalIF":3.4000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-021-02843-z.pdf","citationCount":"5","resultStr":"{\"title\":\"Two-dimensional Bhattacharyya bound linear discriminant analysis with its applications\",\"authors\":\"Yan-Ru Guo, Yan-Qin Bai, Chun-Na Li, Lan Bai, Yuan-Hai Shao\",\"doi\":\"10.1007/s10489-021-02843-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recently proposed L2-norm linear discriminant analysis criterion based on Bhattacharyya error bound estimation (L2BLDA) was an effective improvement over linear discriminant analysis (LDA) and was used to handle vector input samples. When faced with two-dimensional (2D) inputs, such as images, converting two-dimensional data to vectors, regardless of the inherent structure of the image, may result in some loss of useful information. In this paper, we propose a novel two-dimensional Bhattacharyya bound linear discriminant analysis (2DBLDA). 2DBLDA maximizes the matrix-based between-class distance, which is measured by the weighted pairwise distances of class means and minimizes the matrix-based within-class distance. The criterion of 2DBLDA is equivalent to optimizing the upper bound of the Bhattacharyya error. The weighting constant between the between-class and within-class terms is determined by the involved data that make the proposed 2DBLDA adaptive. The construction of 2DBLDA avoids the small sample size (SSS) problem, is robust, and can be solved through a simple standard eigenvalue decomposition problem. The experimental results on image recognition and face image reconstruction demonstrate the effectiveness of 2DBLDA.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"52 8\",\"pages\":\"8793 - 8809\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-021-02843-z.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-021-02843-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-021-02843-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Two-dimensional Bhattacharyya bound linear discriminant analysis with its applications
The recently proposed L2-norm linear discriminant analysis criterion based on Bhattacharyya error bound estimation (L2BLDA) was an effective improvement over linear discriminant analysis (LDA) and was used to handle vector input samples. When faced with two-dimensional (2D) inputs, such as images, converting two-dimensional data to vectors, regardless of the inherent structure of the image, may result in some loss of useful information. In this paper, we propose a novel two-dimensional Bhattacharyya bound linear discriminant analysis (2DBLDA). 2DBLDA maximizes the matrix-based between-class distance, which is measured by the weighted pairwise distances of class means and minimizes the matrix-based within-class distance. The criterion of 2DBLDA is equivalent to optimizing the upper bound of the Bhattacharyya error. The weighting constant between the between-class and within-class terms is determined by the involved data that make the proposed 2DBLDA adaptive. The construction of 2DBLDA avoids the small sample size (SSS) problem, is robust, and can be solved through a simple standard eigenvalue decomposition problem. The experimental results on image recognition and face image reconstruction demonstrate the effectiveness of 2DBLDA.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.