院前抗低温装置热性能和表面温度的差异:一项体外研究。

Emergency medicine journal : EMJ Pub Date : 2022-11-01 Epub Date: 2021-11-05 DOI:10.1136/emermed-2020-211057
Erez Dvir, Danny Epstein, Baruch Berzon, Aeyal Raz, Amit Lehavi
{"title":"院前抗低温装置热性能和表面温度的差异:一项体外研究。","authors":"Erez Dvir,&nbsp;Danny Epstein,&nbsp;Baruch Berzon,&nbsp;Aeyal Raz,&nbsp;Amit Lehavi","doi":"10.1136/emermed-2020-211057","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Preventing and treating hypothermia in prehospital settings is crucial. Several products have been developed to prevent heat loss and actively warm patients in prehospital settings. We compared the efficacy and the surface temperature of different antihypothermia products, using a fluid-based model at two ambient temperatures.</p><p><strong>Methods: </strong>We tested five active (Blizzard Heat with active pads, Ready-Heat, Ready-Heat-II, Hypothermia Prevention and Management Kit (HPMK), Bair Hugger) and five passive (Blizzard Heat, Heat Reflective Shell, sleeping bag, 'space blanket', wool blanket) antihypothermia products. A torso model consisting of four 8 L bags of fluid preheated to 36°C±0.5°C (97±0.5°F) was used to compare the devices' performances at 20°C (68°F) and 8°C (46°F). Inner and surface temperatures were recorded for up to 480 min.</p><p><strong>Results: </strong>We found significant differences in heat loss in fluid bags among the tested devices at both temperatures (p<0.001). At 20°C, only HPMK and Ready-Heat-II increased the inner temperature for 480 min while Blizzard Heat with active pads prevented heat loss. Ready-Heat prevented heat loss for 90 min. All the other devices did not prevent heat loss beyond 30 min. At 8°C, none of the products heated the model. Bair Hugger, HPMK, Ready-Heat II and sleeping bag prevented heat loss for 30 min. At 60, 90 and 120 min HPMK, Ready-Heat II and Bair Hugger were the most effective. Over 480 min, Bair Hugger was most effective, with a heat loss of 2.3°C±0.4°C. The surface temperature exceeded 44°C (111°F) for all the exothermic warming devices when used for a prolonged period of time.</p><p><strong>Conclusion: </strong>At 20°C, HPMK and Ready-Heat-II increased fluid temperature in the model, while the other devices decreased heat loss. At 8°C, none of the tested devices increased the temperature. However, active heating devices prevented heat loss slightly better than passive methods. A protective insulation layer should be used with all active heating blankets.</p>","PeriodicalId":410922,"journal":{"name":"Emergency medicine journal : EMJ","volume":" ","pages":"833-838"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Differences in the thermal properties and surface temperature of prehospital antihypothermia devices: an in vitro study.\",\"authors\":\"Erez Dvir,&nbsp;Danny Epstein,&nbsp;Baruch Berzon,&nbsp;Aeyal Raz,&nbsp;Amit Lehavi\",\"doi\":\"10.1136/emermed-2020-211057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Preventing and treating hypothermia in prehospital settings is crucial. Several products have been developed to prevent heat loss and actively warm patients in prehospital settings. We compared the efficacy and the surface temperature of different antihypothermia products, using a fluid-based model at two ambient temperatures.</p><p><strong>Methods: </strong>We tested five active (Blizzard Heat with active pads, Ready-Heat, Ready-Heat-II, Hypothermia Prevention and Management Kit (HPMK), Bair Hugger) and five passive (Blizzard Heat, Heat Reflective Shell, sleeping bag, 'space blanket', wool blanket) antihypothermia products. A torso model consisting of four 8 L bags of fluid preheated to 36°C±0.5°C (97±0.5°F) was used to compare the devices' performances at 20°C (68°F) and 8°C (46°F). Inner and surface temperatures were recorded for up to 480 min.</p><p><strong>Results: </strong>We found significant differences in heat loss in fluid bags among the tested devices at both temperatures (p<0.001). At 20°C, only HPMK and Ready-Heat-II increased the inner temperature for 480 min while Blizzard Heat with active pads prevented heat loss. Ready-Heat prevented heat loss for 90 min. All the other devices did not prevent heat loss beyond 30 min. At 8°C, none of the products heated the model. Bair Hugger, HPMK, Ready-Heat II and sleeping bag prevented heat loss for 30 min. At 60, 90 and 120 min HPMK, Ready-Heat II and Bair Hugger were the most effective. Over 480 min, Bair Hugger was most effective, with a heat loss of 2.3°C±0.4°C. The surface temperature exceeded 44°C (111°F) for all the exothermic warming devices when used for a prolonged period of time.</p><p><strong>Conclusion: </strong>At 20°C, HPMK and Ready-Heat-II increased fluid temperature in the model, while the other devices decreased heat loss. At 8°C, none of the tested devices increased the temperature. However, active heating devices prevented heat loss slightly better than passive methods. A protective insulation layer should be used with all active heating blankets.</p>\",\"PeriodicalId\":410922,\"journal\":{\"name\":\"Emergency medicine journal : EMJ\",\"volume\":\" \",\"pages\":\"833-838\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emergency medicine journal : EMJ\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/emermed-2020-211057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emergency medicine journal : EMJ","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/emermed-2020-211057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

背景:院前预防和治疗低温是至关重要的。一些产品已经开发,以防止热损失和积极温暖病人院前设置。我们使用液体模型在两种环境温度下比较了不同抗低温产品的疗效和表面温度。方法:我们测试了5种主动抗低温产品(Blizzard Heat with active pads, Ready-Heat, Ready-Heat- ii, Hypothermia Prevention and Management Kit (HPMK), hair Hugger)和5种被动抗低温产品(Blizzard Heat, Heat Reflective Shell,睡袋,“太空毯”,羊毛毯)。躯干模型由四个8升液体袋组成,加热到36°C±0.5°C(97±0.5°F),用于比较设备在20°C(68°F)和8°C(46°F)下的性能。内部和表面温度记录长达480分钟。结果:在两种温度下,我们发现被测装置在液袋中的热损失有显著差异(p结论:在20°C时,HPMK和Ready-Heat-II增加了模型中的流体温度,而其他装置则降低了热损失。在8°C时,所有测试设备都没有升高温度。然而,主动加热装置防止热损失略好于被动方法。所有主动加热毯都应使用保护绝缘层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differences in the thermal properties and surface temperature of prehospital antihypothermia devices: an in vitro study.

Background: Preventing and treating hypothermia in prehospital settings is crucial. Several products have been developed to prevent heat loss and actively warm patients in prehospital settings. We compared the efficacy and the surface temperature of different antihypothermia products, using a fluid-based model at two ambient temperatures.

Methods: We tested five active (Blizzard Heat with active pads, Ready-Heat, Ready-Heat-II, Hypothermia Prevention and Management Kit (HPMK), Bair Hugger) and five passive (Blizzard Heat, Heat Reflective Shell, sleeping bag, 'space blanket', wool blanket) antihypothermia products. A torso model consisting of four 8 L bags of fluid preheated to 36°C±0.5°C (97±0.5°F) was used to compare the devices' performances at 20°C (68°F) and 8°C (46°F). Inner and surface temperatures were recorded for up to 480 min.

Results: We found significant differences in heat loss in fluid bags among the tested devices at both temperatures (p<0.001). At 20°C, only HPMK and Ready-Heat-II increased the inner temperature for 480 min while Blizzard Heat with active pads prevented heat loss. Ready-Heat prevented heat loss for 90 min. All the other devices did not prevent heat loss beyond 30 min. At 8°C, none of the products heated the model. Bair Hugger, HPMK, Ready-Heat II and sleeping bag prevented heat loss for 30 min. At 60, 90 and 120 min HPMK, Ready-Heat II and Bair Hugger were the most effective. Over 480 min, Bair Hugger was most effective, with a heat loss of 2.3°C±0.4°C. The surface temperature exceeded 44°C (111°F) for all the exothermic warming devices when used for a prolonged period of time.

Conclusion: At 20°C, HPMK and Ready-Heat-II increased fluid temperature in the model, while the other devices decreased heat loss. At 8°C, none of the tested devices increased the temperature. However, active heating devices prevented heat loss slightly better than passive methods. A protective insulation layer should be used with all active heating blankets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信