{"title":"噪声图像定心及其在低温电镜中的应用。","authors":"Ayelet Heimowitz, Nir Sharon, Amit Singer","doi":"10.1137/20m1365946","DOIUrl":null,"url":null,"abstract":"<p><p>We target the problem of estimating the center of mass of objects in noisy two-dimensional images. We assume that the noise dominates the image, and thus many standard approaches are vulnerable to estimation errors, e.g., the direct computation of the center of mass and the geometric median which is a robust alternative to the center of mass. In this paper, we define a novel surrogate function to the center of mass. We present a mathematical and numerical analysis of our method and show that it outperforms existing methods for estimating the center of mass of an object in various realistic scenarios. As a case study, we apply our centering method to data from single-particle cryo-electron microscopy (cryo-EM), where the goal is to reconstruct the three-dimensional structure of macromolecules. We show how to apply our approach for a better translational alignment of molecule images picked from experimental data. In this way, we facilitate the succeeding steps of reconstruction and streamline the entire cryo-EM pipeline, saving computational time and supporting resolution enhancement.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"14 2","pages":"689-716"},"PeriodicalIF":2.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813033/pdf/nihms-1739531.pdf","citationCount":"0","resultStr":"{\"title\":\"Centering Noisy Images with Application to Cryo-EM.\",\"authors\":\"Ayelet Heimowitz, Nir Sharon, Amit Singer\",\"doi\":\"10.1137/20m1365946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We target the problem of estimating the center of mass of objects in noisy two-dimensional images. We assume that the noise dominates the image, and thus many standard approaches are vulnerable to estimation errors, e.g., the direct computation of the center of mass and the geometric median which is a robust alternative to the center of mass. In this paper, we define a novel surrogate function to the center of mass. We present a mathematical and numerical analysis of our method and show that it outperforms existing methods for estimating the center of mass of an object in various realistic scenarios. As a case study, we apply our centering method to data from single-particle cryo-electron microscopy (cryo-EM), where the goal is to reconstruct the three-dimensional structure of macromolecules. We show how to apply our approach for a better translational alignment of molecule images picked from experimental data. In this way, we facilitate the succeeding steps of reconstruction and streamline the entire cryo-EM pipeline, saving computational time and supporting resolution enhancement.</p>\",\"PeriodicalId\":49528,\"journal\":{\"name\":\"SIAM Journal on Imaging Sciences\",\"volume\":\"14 2\",\"pages\":\"689-716\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813033/pdf/nihms-1739531.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Imaging Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/20m1365946\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m1365946","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Centering Noisy Images with Application to Cryo-EM.
We target the problem of estimating the center of mass of objects in noisy two-dimensional images. We assume that the noise dominates the image, and thus many standard approaches are vulnerable to estimation errors, e.g., the direct computation of the center of mass and the geometric median which is a robust alternative to the center of mass. In this paper, we define a novel surrogate function to the center of mass. We present a mathematical and numerical analysis of our method and show that it outperforms existing methods for estimating the center of mass of an object in various realistic scenarios. As a case study, we apply our centering method to data from single-particle cryo-electron microscopy (cryo-EM), where the goal is to reconstruct the three-dimensional structure of macromolecules. We show how to apply our approach for a better translational alignment of molecule images picked from experimental data. In this way, we facilitate the succeeding steps of reconstruction and streamline the entire cryo-EM pipeline, saving computational time and supporting resolution enhancement.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.