Colombeau广义数的非阿基米德环上的超级数。

Pub Date : 2022-01-01 Epub Date: 2021-11-28 DOI:10.1007/s00605-021-01647-0
Diksha Tiwari, Paolo Giordano
{"title":"Colombeau广义数的非阿基米德环上的超级数。","authors":"Diksha Tiwari,&nbsp;Paolo Giordano","doi":"10.1007/s00605-021-01647-0","DOIUrl":null,"url":null,"abstract":"<p><p>This article is the natural continuation of the paper: Mukhammadiev et al. <i>Supremum, infimum and hyperlimits of Colombeau generalized numbers</i> in this journal. Since the ring of Robinson-Colombeau is non-Archimedean and Cauchy complete, a classical series <math> <mrow><msubsup><mo>∑</mo> <mrow><mi>n</mi> <mo>=</mo> <mn>0</mn></mrow> <mrow><mo>+</mo> <mi>∞</mi></mrow> </msubsup> <msub><mi>a</mi> <mi>n</mi></msub> </mrow> </math> of generalized numbers is convergent <i>if</i> and only if <math> <mrow><msub><mi>a</mi> <mi>n</mi></msub> <mo>→</mo> <mn>0</mn></mrow> </math> in the sharp topology. Therefore, this property does not permit us to generalize several classical results, mainly in the study of analytic generalized functions (as well as, e.g., in the study of sigma-additivity in integration of generalized functions). Introducing the notion of hyperseries, we solve this problem recovering classical examples of analytic functions as well as several classical results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776721/pdf/","citationCount":"2","resultStr":"{\"title\":\"Hyperseries in the non-Archimedean ring of Colombeau generalized numbers.\",\"authors\":\"Diksha Tiwari,&nbsp;Paolo Giordano\",\"doi\":\"10.1007/s00605-021-01647-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article is the natural continuation of the paper: Mukhammadiev et al. <i>Supremum, infimum and hyperlimits of Colombeau generalized numbers</i> in this journal. Since the ring of Robinson-Colombeau is non-Archimedean and Cauchy complete, a classical series <math> <mrow><msubsup><mo>∑</mo> <mrow><mi>n</mi> <mo>=</mo> <mn>0</mn></mrow> <mrow><mo>+</mo> <mi>∞</mi></mrow> </msubsup> <msub><mi>a</mi> <mi>n</mi></msub> </mrow> </math> of generalized numbers is convergent <i>if</i> and only if <math> <mrow><msub><mi>a</mi> <mi>n</mi></msub> <mo>→</mo> <mn>0</mn></mrow> </math> in the sharp topology. Therefore, this property does not permit us to generalize several classical results, mainly in the study of analytic generalized functions (as well as, e.g., in the study of sigma-additivity in integration of generalized functions). Introducing the notion of hyperseries, we solve this problem recovering classical examples of analytic functions as well as several classical results.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776721/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-021-01647-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-021-01647-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文是论文的自然延续:Mukhammadiev等。本文研究了Colombeau广义数的上、下、超极限。由于Robinson-Colombeau环是非阿基米德和柯西完全的,所以广义数的经典级数∑n = 0 +∞an当且仅当n→0在锐拓扑上收敛。因此,这个性质不允许我们推广一些经典的结果,主要是在解析广义函数的研究中(以及,例如,在广义函数积分中的sigma-可加性的研究中)。引入超级数的概念,恢复了解析函数的经典实例,并给出了几个经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hyperseries in the non-Archimedean ring of Colombeau generalized numbers.

This article is the natural continuation of the paper: Mukhammadiev et al. Supremum, infimum and hyperlimits of Colombeau generalized numbers in this journal. Since the ring of Robinson-Colombeau is non-Archimedean and Cauchy complete, a classical series n = 0 + a n of generalized numbers is convergent if and only if a n 0 in the sharp topology. Therefore, this property does not permit us to generalize several classical results, mainly in the study of analytic generalized functions (as well as, e.g., in the study of sigma-additivity in integration of generalized functions). Introducing the notion of hyperseries, we solve this problem recovering classical examples of analytic functions as well as several classical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信