Tian Qiu, Jiamei Guo, Lixia Wang, Lei Shi, Ming Ai, Zhu Xia, Zhiping Peng, Li Kuang
{"title":"动态小胶质细胞激活与lps诱导的小鼠抑郁样行为相关:一项[18F] DPA-714 PET成像研究。","authors":"Tian Qiu, Jiamei Guo, Lixia Wang, Lei Shi, Ming Ai, Zhu Xia, Zhiping Peng, Li Kuang","doi":"10.17305/bjbms.2021.6825","DOIUrl":null,"url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a highly pervasive, severe psychological condition for which the precise underlying pathophysiology is incompletely understood, although microglial activation is known to play a role in this context. In this study we analyzed the association between neuroinflammation and depressive-like behaviors in a lipopolysaccharide (LPS)-induced mouse model system using 10-12-week-old male C57BL/6 mice. Microglial activation and associated neuroinflammatory activity were monitored via positron emission tomography (PET) imaging. Animals were assessed at three time points, including 24 h prior to LPS injection, 24 h post-LPS injection, and 72 h post-LPS injection. Analyses of microglial activation and hippocampal neuroinflammation were conducted through [18]F DPA-714 PET imaging and immunohistochemical staining for ionized calcium-binding adapter molecule 1 (Iba-1) and translocator protein (TSPO). Moreover, NOD-like receptor protein 3 (NLRP3) inflammasome activity and interleukin-1β (IL-1β) levels were assessed at 24 h post-LPS injection. We found that LPS treatment was associated with a marked increase in depressive-like behavior at 24 h post-injection time point, and that it was less pronounced at the 72 h post-injection time point. These changes coincided with enhanced [18F] DPA-714 PET uptake in the whole brain, hippocampus, cortex and amygdala together with increased hippocampal microglial activation as evidenced by immunofluorescent staining. By 72 h post-injection, however, these PET and immunofluorescence phenotypes had returned to baseline levels. Furthermore, increased NLRP3 inflammasome activation and IL-1β expression were evident at 24 h post-LPS injection. These data demonstrate that dynamic microglial activation is associated with LPS-induced depressive-like behaviors and hippocampal neuroinflammation in a mouse model system.</p>","PeriodicalId":9147,"journal":{"name":"Bosnian journal of basic medical sciences","volume":" ","pages":"649-659"},"PeriodicalIF":3.1000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392970/pdf/","citationCount":"6","resultStr":"{\"title\":\"Dynamic microglial activation is associated with LPS-induced depressive-like behavior in mice: An [18F] DPA-714 PET imaging study.\",\"authors\":\"Tian Qiu, Jiamei Guo, Lixia Wang, Lei Shi, Ming Ai, Zhu Xia, Zhiping Peng, Li Kuang\",\"doi\":\"10.17305/bjbms.2021.6825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Major depressive disorder (MDD) is a highly pervasive, severe psychological condition for which the precise underlying pathophysiology is incompletely understood, although microglial activation is known to play a role in this context. In this study we analyzed the association between neuroinflammation and depressive-like behaviors in a lipopolysaccharide (LPS)-induced mouse model system using 10-12-week-old male C57BL/6 mice. Microglial activation and associated neuroinflammatory activity were monitored via positron emission tomography (PET) imaging. Animals were assessed at three time points, including 24 h prior to LPS injection, 24 h post-LPS injection, and 72 h post-LPS injection. Analyses of microglial activation and hippocampal neuroinflammation were conducted through [18]F DPA-714 PET imaging and immunohistochemical staining for ionized calcium-binding adapter molecule 1 (Iba-1) and translocator protein (TSPO). Moreover, NOD-like receptor protein 3 (NLRP3) inflammasome activity and interleukin-1β (IL-1β) levels were assessed at 24 h post-LPS injection. We found that LPS treatment was associated with a marked increase in depressive-like behavior at 24 h post-injection time point, and that it was less pronounced at the 72 h post-injection time point. These changes coincided with enhanced [18F] DPA-714 PET uptake in the whole brain, hippocampus, cortex and amygdala together with increased hippocampal microglial activation as evidenced by immunofluorescent staining. By 72 h post-injection, however, these PET and immunofluorescence phenotypes had returned to baseline levels. Furthermore, increased NLRP3 inflammasome activation and IL-1β expression were evident at 24 h post-LPS injection. These data demonstrate that dynamic microglial activation is associated with LPS-induced depressive-like behaviors and hippocampal neuroinflammation in a mouse model system.</p>\",\"PeriodicalId\":9147,\"journal\":{\"name\":\"Bosnian journal of basic medical sciences\",\"volume\":\" \",\"pages\":\"649-659\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392970/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bosnian journal of basic medical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.17305/bjbms.2021.6825\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bosnian journal of basic medical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.17305/bjbms.2021.6825","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Dynamic microglial activation is associated with LPS-induced depressive-like behavior in mice: An [18F] DPA-714 PET imaging study.
Major depressive disorder (MDD) is a highly pervasive, severe psychological condition for which the precise underlying pathophysiology is incompletely understood, although microglial activation is known to play a role in this context. In this study we analyzed the association between neuroinflammation and depressive-like behaviors in a lipopolysaccharide (LPS)-induced mouse model system using 10-12-week-old male C57BL/6 mice. Microglial activation and associated neuroinflammatory activity were monitored via positron emission tomography (PET) imaging. Animals were assessed at three time points, including 24 h prior to LPS injection, 24 h post-LPS injection, and 72 h post-LPS injection. Analyses of microglial activation and hippocampal neuroinflammation were conducted through [18]F DPA-714 PET imaging and immunohistochemical staining for ionized calcium-binding adapter molecule 1 (Iba-1) and translocator protein (TSPO). Moreover, NOD-like receptor protein 3 (NLRP3) inflammasome activity and interleukin-1β (IL-1β) levels were assessed at 24 h post-LPS injection. We found that LPS treatment was associated with a marked increase in depressive-like behavior at 24 h post-injection time point, and that it was less pronounced at the 72 h post-injection time point. These changes coincided with enhanced [18F] DPA-714 PET uptake in the whole brain, hippocampus, cortex and amygdala together with increased hippocampal microglial activation as evidenced by immunofluorescent staining. By 72 h post-injection, however, these PET and immunofluorescence phenotypes had returned to baseline levels. Furthermore, increased NLRP3 inflammasome activation and IL-1β expression were evident at 24 h post-LPS injection. These data demonstrate that dynamic microglial activation is associated with LPS-induced depressive-like behaviors and hippocampal neuroinflammation in a mouse model system.
期刊介绍:
The Bosnian Journal of Basic Medical Sciences (BJBMS) is an international, English-language, peer reviewed journal, publishing original articles from different disciplines of basic medical sciences. BJBMS welcomes original research and comprehensive reviews as well as short research communications in the field of biochemistry, genetics, immunology, microbiology, pathology, pharmacology, pharmaceutical sciences and physiology.