磷脂酰甘油磷酸合成酶PgsA利用三叉形两亲腔在膜-细胞质界面催化

IF 2.7 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bowei Yang , Hebang Yao , Dianfan Li , Zhenfeng Liu
{"title":"磷脂酰甘油磷酸合成酶PgsA利用三叉形两亲腔在膜-细胞质界面催化","authors":"Bowei Yang ,&nbsp;Hebang Yao ,&nbsp;Dianfan Li ,&nbsp;Zhenfeng Liu","doi":"10.1016/j.crstbi.2021.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphatidylglycerol is a crucial phospholipid found ubiquitously in biological membranes of prokaryotic and eukaryotic cells. The phosphatidylglycerol phosphate (PGP) synthase (PgsA), a membrane-embedded enzyme, catalyzes the primary reaction of phosphatidylglycerol biosynthesis. Mutations in <em>pgsA</em> frequently correlate with daptomycin resistance in <em>Staphylococcus aureus</em> and other prevalent infectious pathogens. Here we report the crystal structures of <em>S. aureus</em> PgsA (<em>Sa</em>PgsA) captured at two distinct states of the catalytic process, with lipid substrate (cytidine diphosphate-diacylglycerol, CDP-DAG) or product (PGP) bound to the active site within a trifurcated amphipathic cavity. The hydrophilic head groups of CDP-DAG and PGP occupy two different pockets in the cavity, inducing local conformational changes. An elongated membrane-exposed surface groove accommodates the fatty acyl chains of CDP-DAG/PGP and opens a lateral portal for lipid entry/release. Remarkably, the daptomycin resistance-related mutations mostly cluster around the active site, causing reduction of enzymatic activity. Our results provide detailed mechanistic insights into the dynamic catalytic process of PgsA and structural frameworks beneficial for development of antimicrobial agents targeting PgsA from pathogenic bacteria.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"3 ","pages":"Pages 312-323"},"PeriodicalIF":2.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/88/88/main.PMC8640168.pdf","citationCount":"9","resultStr":"{\"title\":\"The phosphatidylglycerol phosphate synthase PgsA utilizes a trifurcated amphipathic cavity for catalysis at the membrane-cytosol interface\",\"authors\":\"Bowei Yang ,&nbsp;Hebang Yao ,&nbsp;Dianfan Li ,&nbsp;Zhenfeng Liu\",\"doi\":\"10.1016/j.crstbi.2021.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phosphatidylglycerol is a crucial phospholipid found ubiquitously in biological membranes of prokaryotic and eukaryotic cells. The phosphatidylglycerol phosphate (PGP) synthase (PgsA), a membrane-embedded enzyme, catalyzes the primary reaction of phosphatidylglycerol biosynthesis. Mutations in <em>pgsA</em> frequently correlate with daptomycin resistance in <em>Staphylococcus aureus</em> and other prevalent infectious pathogens. Here we report the crystal structures of <em>S. aureus</em> PgsA (<em>Sa</em>PgsA) captured at two distinct states of the catalytic process, with lipid substrate (cytidine diphosphate-diacylglycerol, CDP-DAG) or product (PGP) bound to the active site within a trifurcated amphipathic cavity. The hydrophilic head groups of CDP-DAG and PGP occupy two different pockets in the cavity, inducing local conformational changes. An elongated membrane-exposed surface groove accommodates the fatty acyl chains of CDP-DAG/PGP and opens a lateral portal for lipid entry/release. Remarkably, the daptomycin resistance-related mutations mostly cluster around the active site, causing reduction of enzymatic activity. Our results provide detailed mechanistic insights into the dynamic catalytic process of PgsA and structural frameworks beneficial for development of antimicrobial agents targeting PgsA from pathogenic bacteria.</p></div>\",\"PeriodicalId\":10870,\"journal\":{\"name\":\"Current Research in Structural Biology\",\"volume\":\"3 \",\"pages\":\"Pages 312-323\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/88/88/main.PMC8640168.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Structural Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665928X21000283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665928X21000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 9

摘要

磷脂酰甘油是一种重要的磷脂,普遍存在于原核和真核细胞的生物膜中。磷酸磷脂酰甘油(PGP)合成酶(PgsA)是一种膜包埋酶,催化了磷脂酰甘油生物合成的初级反应。在金黄色葡萄球菌和其他流行的感染性病原体中,pgsA突变经常与达托霉素耐药性相关。在这里,我们报道了金黄色葡萄球菌PgsA (SaPgsA)在催化过程的两种不同状态下的晶体结构,脂质底物(二磷酸胞苷-二酰基甘油,CDP-DAG)或产物(PGP)结合在三叉两偶腔内的活性位点上。CDP-DAG和PGP的亲水头基占据两个不同的空腔,引起局部构象变化。一个细长的膜暴露表面沟槽容纳了CDP-DAG/PGP的脂肪酰基链,并打开了脂质进入/释放的侧门户。值得注意的是,与达托霉素耐药相关的突变大多聚集在活性位点周围,导致酶活性降低。我们的研究结果为PgsA的动态催化过程提供了详细的机制见解,并为开发针对致病菌的PgsA抗菌药物提供了有益的结构框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The phosphatidylglycerol phosphate synthase PgsA utilizes a trifurcated amphipathic cavity for catalysis at the membrane-cytosol interface

The phosphatidylglycerol phosphate synthase PgsA utilizes a trifurcated amphipathic cavity for catalysis at the membrane-cytosol interface

Phosphatidylglycerol is a crucial phospholipid found ubiquitously in biological membranes of prokaryotic and eukaryotic cells. The phosphatidylglycerol phosphate (PGP) synthase (PgsA), a membrane-embedded enzyme, catalyzes the primary reaction of phosphatidylglycerol biosynthesis. Mutations in pgsA frequently correlate with daptomycin resistance in Staphylococcus aureus and other prevalent infectious pathogens. Here we report the crystal structures of S. aureus PgsA (SaPgsA) captured at two distinct states of the catalytic process, with lipid substrate (cytidine diphosphate-diacylglycerol, CDP-DAG) or product (PGP) bound to the active site within a trifurcated amphipathic cavity. The hydrophilic head groups of CDP-DAG and PGP occupy two different pockets in the cavity, inducing local conformational changes. An elongated membrane-exposed surface groove accommodates the fatty acyl chains of CDP-DAG/PGP and opens a lateral portal for lipid entry/release. Remarkably, the daptomycin resistance-related mutations mostly cluster around the active site, causing reduction of enzymatic activity. Our results provide detailed mechanistic insights into the dynamic catalytic process of PgsA and structural frameworks beneficial for development of antimicrobial agents targeting PgsA from pathogenic bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
33
审稿时长
104 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信