{"title":"葡聚糖纳米复合水凝胶骨再生生物学及生物活性评价。","authors":"Parisa Nikpour, Hamed Salimi-Kenari, Sayed Mahmood Rabiee","doi":"10.1007/s40204-021-00171-6","DOIUrl":null,"url":null,"abstract":"<p><p>Insufficient biological and bioactive properties of dextran hydrogels limit their applications as promising scaffolds for tissue engineering. We developed nanocomposite dextran hydrogels comprised of bioactive glass (nBGC: 64% SiO2, 31% CaO, 5% P<sub>2</sub>O<sub>5</sub>) nanoparticles with an average particle size of 77 nm using a chemical crosslinking of dextran chains to form 3D hydrogel networks. In the current study; bioactivity of the obtained nanocomposite hydrogels was evaluated through the formation of apatite crystal structures after the incubation in simulated body fluid (SBF) at various submersion periods and nBGC content. The scanning electron microscopy (SEM) micrographs represented an enhanced hydroxyapatite formation on the cross section of nanocomposite comprising of nBGC content from 2 to 8 (% by wt). Biomineralization results of Dex-8 (% by wt) composite during 7, 14 and 28 days immersion indicated the apatite layer formation and the growth of apatite crystal size on the surface and cross section of the nanocomposite. Moreover, MTT assessments indicated that human osteosarcoma cells (SaOS-2) were able to adhere and spread within the dextran hydrogels reinforced with the bioactive glass nanoparticles. With regard to enhanced bioactivity and biocompatibility, the developed dextran-nBGC hydrogel could be considered as a suitable candidate for bone tissue engineering application.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633275/pdf/40204_2021_Article_171.pdf","citationCount":"5","resultStr":"{\"title\":\"Biological and bioactivity assessment of dextran nanocomposite hydrogel for bone regeneration.\",\"authors\":\"Parisa Nikpour, Hamed Salimi-Kenari, Sayed Mahmood Rabiee\",\"doi\":\"10.1007/s40204-021-00171-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insufficient biological and bioactive properties of dextran hydrogels limit their applications as promising scaffolds for tissue engineering. We developed nanocomposite dextran hydrogels comprised of bioactive glass (nBGC: 64% SiO2, 31% CaO, 5% P<sub>2</sub>O<sub>5</sub>) nanoparticles with an average particle size of 77 nm using a chemical crosslinking of dextran chains to form 3D hydrogel networks. In the current study; bioactivity of the obtained nanocomposite hydrogels was evaluated through the formation of apatite crystal structures after the incubation in simulated body fluid (SBF) at various submersion periods and nBGC content. The scanning electron microscopy (SEM) micrographs represented an enhanced hydroxyapatite formation on the cross section of nanocomposite comprising of nBGC content from 2 to 8 (% by wt). Biomineralization results of Dex-8 (% by wt) composite during 7, 14 and 28 days immersion indicated the apatite layer formation and the growth of apatite crystal size on the surface and cross section of the nanocomposite. Moreover, MTT assessments indicated that human osteosarcoma cells (SaOS-2) were able to adhere and spread within the dextran hydrogels reinforced with the bioactive glass nanoparticles. With regard to enhanced bioactivity and biocompatibility, the developed dextran-nBGC hydrogel could be considered as a suitable candidate for bone tissue engineering application.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633275/pdf/40204_2021_Article_171.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-021-00171-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00171-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
摘要
右旋糖酐水凝胶的生物学和生物活性不足限制了其作为组织工程支架的应用前景。我们开发了由生物活性玻璃(nBGC: 64% SiO2, 31% CaO, 5% P2O5)纳米颗粒组成的纳米复合葡聚糖水凝胶,平均粒径为77 nm,通过葡聚糖链的化学交联形成3D水凝胶网络。在目前的研究中;通过模拟体液(SBF)中不同浸没时间和nBGC含量的磷灰石晶体结构的形成来评价所获得的纳米复合水凝胶的生物活性。扫描电镜(SEM)显示,在nBGC含量为2 ~ 8 (% by wt)的纳米复合材料的横截面上,羟基磷灰石形成增强。Dex-8 (% by wt)复合材料浸泡7、14和28天的生物矿化结果表明,纳米复合材料表面和横截面上磷灰石层的形成和磷灰石晶体尺寸的增长。此外,MTT评估表明,人类骨肉瘤细胞(SaOS-2)能够粘附和扩散在由生物活性玻璃纳米颗粒增强的葡聚糖水凝胶中。从增强的生物活性和生物相容性方面来看,所制备的葡聚糖- nbgc水凝胶可以被认为是骨组织工程应用的合适候选物。
Biological and bioactivity assessment of dextran nanocomposite hydrogel for bone regeneration.
Insufficient biological and bioactive properties of dextran hydrogels limit their applications as promising scaffolds for tissue engineering. We developed nanocomposite dextran hydrogels comprised of bioactive glass (nBGC: 64% SiO2, 31% CaO, 5% P2O5) nanoparticles with an average particle size of 77 nm using a chemical crosslinking of dextran chains to form 3D hydrogel networks. In the current study; bioactivity of the obtained nanocomposite hydrogels was evaluated through the formation of apatite crystal structures after the incubation in simulated body fluid (SBF) at various submersion periods and nBGC content. The scanning electron microscopy (SEM) micrographs represented an enhanced hydroxyapatite formation on the cross section of nanocomposite comprising of nBGC content from 2 to 8 (% by wt). Biomineralization results of Dex-8 (% by wt) composite during 7, 14 and 28 days immersion indicated the apatite layer formation and the growth of apatite crystal size on the surface and cross section of the nanocomposite. Moreover, MTT assessments indicated that human osteosarcoma cells (SaOS-2) were able to adhere and spread within the dextran hydrogels reinforced with the bioactive glass nanoparticles. With regard to enhanced bioactivity and biocompatibility, the developed dextran-nBGC hydrogel could be considered as a suitable candidate for bone tissue engineering application.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.