{"title":"Colombeau广义数的非阿基米德环上的上、下和超极限。","authors":"A Mukhammadiev, D Tiwari, G Apaaboah, P Giordano","doi":"10.1007/s00605-021-01590-0","DOIUrl":null,"url":null,"abstract":"<p><p>It is well-known that the notion of limit in the sharp topology of sequences of Colombeau generalized numbers <math><mover><mi>R</mi> <mo>~</mo></mover> </math> does not generalize classical results. E.g. the sequence <math> <mrow><mfrac><mn>1</mn> <mi>n</mi></mfrac> <mo>↛</mo> <mn>0</mn></mrow> </math> and a sequence <math> <msub><mrow><mo>(</mo> <msub><mi>x</mi> <mi>n</mi></msub> <mo>)</mo></mrow> <mrow><mi>n</mi> <mo>∈</mo> <mi>N</mi></mrow> </msub> </math> converges <i>if</i> and only if <math> <mrow><msub><mi>x</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mo>-</mo> <msub><mi>x</mi> <mi>n</mi></msub> <mo>→</mo> <mn>0</mn></mrow> </math> . This has several deep consequences, e.g. in the study of series, analytic generalized functions, or sigma-additivity and classical limit theorems in integration of generalized functions. The lacking of these results is also connected to the fact that <math><mover><mi>R</mi> <mo>~</mo></mover> </math> is necessarily not a complete ordered set, e.g. the set of all the infinitesimals has neither supremum nor infimum. We present a solution of these problems with the introduction of the notions of hypernatural number, hypersequence, close supremum and infimum. In this way, we can generalize all the classical theorems for the hyperlimit of a hypersequence. The paper explores ideas that can be applied to other non-Archimedean settings.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-021-01590-0","citationCount":"2","resultStr":"{\"title\":\"Supremum, infimum and hyperlimits in the non-Archimedean ring of Colombeau generalized numbers.\",\"authors\":\"A Mukhammadiev, D Tiwari, G Apaaboah, P Giordano\",\"doi\":\"10.1007/s00605-021-01590-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well-known that the notion of limit in the sharp topology of sequences of Colombeau generalized numbers <math><mover><mi>R</mi> <mo>~</mo></mover> </math> does not generalize classical results. E.g. the sequence <math> <mrow><mfrac><mn>1</mn> <mi>n</mi></mfrac> <mo>↛</mo> <mn>0</mn></mrow> </math> and a sequence <math> <msub><mrow><mo>(</mo> <msub><mi>x</mi> <mi>n</mi></msub> <mo>)</mo></mrow> <mrow><mi>n</mi> <mo>∈</mo> <mi>N</mi></mrow> </msub> </math> converges <i>if</i> and only if <math> <mrow><msub><mi>x</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mo>-</mo> <msub><mi>x</mi> <mi>n</mi></msub> <mo>→</mo> <mn>0</mn></mrow> </math> . This has several deep consequences, e.g. in the study of series, analytic generalized functions, or sigma-additivity and classical limit theorems in integration of generalized functions. The lacking of these results is also connected to the fact that <math><mover><mi>R</mi> <mo>~</mo></mover> </math> is necessarily not a complete ordered set, e.g. the set of all the infinitesimals has neither supremum nor infimum. We present a solution of these problems with the introduction of the notions of hypernatural number, hypersequence, close supremum and infimum. In this way, we can generalize all the classical theorems for the hyperlimit of a hypersequence. The paper explores ideas that can be applied to other non-Archimedean settings.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00605-021-01590-0\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-021-01590-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-021-01590-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
众所周知,在Colombeau广义数列的锐拓扑中,极限的概念并不能推广经典的结果。例如,序列1n: o和序列(x n) n∈n收敛当且仅当x n + 1 - x n→0。这在级数、解析广义函数、或广义函数积分中的西格玛加性和经典极限定理的研究中具有深远的影响。这些结果的缺乏也与R ~不一定是完全有序集的事实有关,例如,所有无穷小的集合既没有上限值,也没有上限值。通过引入超自然数、超序、近上和上极值等概念,给出了这些问题的一个解。由此,我们可以推广关于超序列的超极限的所有经典定理。本文探讨了可以应用于其他非阿基米德设置的想法。
Supremum, infimum and hyperlimits in the non-Archimedean ring of Colombeau generalized numbers.
It is well-known that the notion of limit in the sharp topology of sequences of Colombeau generalized numbers does not generalize classical results. E.g. the sequence and a sequence converges if and only if . This has several deep consequences, e.g. in the study of series, analytic generalized functions, or sigma-additivity and classical limit theorems in integration of generalized functions. The lacking of these results is also connected to the fact that is necessarily not a complete ordered set, e.g. the set of all the infinitesimals has neither supremum nor infimum. We present a solution of these problems with the introduction of the notions of hypernatural number, hypersequence, close supremum and infimum. In this way, we can generalize all the classical theorems for the hyperlimit of a hypersequence. The paper explores ideas that can be applied to other non-Archimedean settings.