Colombeau广义数的非阿基米德环上的上、下和超极限。

Pub Date : 2021-01-01 Epub Date: 2021-07-03 DOI:10.1007/s00605-021-01590-0
A Mukhammadiev, D Tiwari, G Apaaboah, P Giordano
{"title":"Colombeau广义数的非阿基米德环上的上、下和超极限。","authors":"A Mukhammadiev,&nbsp;D Tiwari,&nbsp;G Apaaboah,&nbsp;P Giordano","doi":"10.1007/s00605-021-01590-0","DOIUrl":null,"url":null,"abstract":"<p><p>It is well-known that the notion of limit in the sharp topology of sequences of Colombeau generalized numbers <math><mover><mi>R</mi> <mo>~</mo></mover> </math> does not generalize classical results. E.g. the sequence <math> <mrow><mfrac><mn>1</mn> <mi>n</mi></mfrac> <mo>↛</mo> <mn>0</mn></mrow> </math> and a sequence <math> <msub><mrow><mo>(</mo> <msub><mi>x</mi> <mi>n</mi></msub> <mo>)</mo></mrow> <mrow><mi>n</mi> <mo>∈</mo> <mi>N</mi></mrow> </msub> </math> converges <i>if</i> and only if <math> <mrow><msub><mi>x</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mo>-</mo> <msub><mi>x</mi> <mi>n</mi></msub> <mo>→</mo> <mn>0</mn></mrow> </math> . This has several deep consequences, e.g. in the study of series, analytic generalized functions, or sigma-additivity and classical limit theorems in integration of generalized functions. The lacking of these results is also connected to the fact that <math><mover><mi>R</mi> <mo>~</mo></mover> </math> is necessarily not a complete ordered set, e.g. the set of all the infinitesimals has neither supremum nor infimum. We present a solution of these problems with the introduction of the notions of hypernatural number, hypersequence, close supremum and infimum. In this way, we can generalize all the classical theorems for the hyperlimit of a hypersequence. The paper explores ideas that can be applied to other non-Archimedean settings.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-021-01590-0","citationCount":"2","resultStr":"{\"title\":\"Supremum, infimum and hyperlimits in the non-Archimedean ring of Colombeau generalized numbers.\",\"authors\":\"A Mukhammadiev,&nbsp;D Tiwari,&nbsp;G Apaaboah,&nbsp;P Giordano\",\"doi\":\"10.1007/s00605-021-01590-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well-known that the notion of limit in the sharp topology of sequences of Colombeau generalized numbers <math><mover><mi>R</mi> <mo>~</mo></mover> </math> does not generalize classical results. E.g. the sequence <math> <mrow><mfrac><mn>1</mn> <mi>n</mi></mfrac> <mo>↛</mo> <mn>0</mn></mrow> </math> and a sequence <math> <msub><mrow><mo>(</mo> <msub><mi>x</mi> <mi>n</mi></msub> <mo>)</mo></mrow> <mrow><mi>n</mi> <mo>∈</mo> <mi>N</mi></mrow> </msub> </math> converges <i>if</i> and only if <math> <mrow><msub><mi>x</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> <mo>-</mo> <msub><mi>x</mi> <mi>n</mi></msub> <mo>→</mo> <mn>0</mn></mrow> </math> . This has several deep consequences, e.g. in the study of series, analytic generalized functions, or sigma-additivity and classical limit theorems in integration of generalized functions. The lacking of these results is also connected to the fact that <math><mover><mi>R</mi> <mo>~</mo></mover> </math> is necessarily not a complete ordered set, e.g. the set of all the infinitesimals has neither supremum nor infimum. We present a solution of these problems with the introduction of the notions of hypernatural number, hypersequence, close supremum and infimum. In this way, we can generalize all the classical theorems for the hyperlimit of a hypersequence. The paper explores ideas that can be applied to other non-Archimedean settings.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00605-021-01590-0\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-021-01590-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-021-01590-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

众所周知,在Colombeau广义数列的锐拓扑中,极限的概念并不能推广经典的结果。例如,序列1n: o和序列(x n) n∈n收敛当且仅当x n + 1 - x n→0。这在级数、解析广义函数、或广义函数积分中的西格玛加性和经典极限定理的研究中具有深远的影响。这些结果的缺乏也与R ~不一定是完全有序集的事实有关,例如,所有无穷小的集合既没有上限值,也没有上限值。通过引入超自然数、超序、近上和上极值等概念,给出了这些问题的一个解。由此,我们可以推广关于超序列的超极限的所有经典定理。本文探讨了可以应用于其他非阿基米德设置的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Supremum, infimum and hyperlimits in the non-Archimedean ring of Colombeau generalized numbers.

It is well-known that the notion of limit in the sharp topology of sequences of Colombeau generalized numbers R ~ does not generalize classical results. E.g. the sequence 1 n 0 and a sequence ( x n ) n N converges if and only if x n + 1 - x n 0 . This has several deep consequences, e.g. in the study of series, analytic generalized functions, or sigma-additivity and classical limit theorems in integration of generalized functions. The lacking of these results is also connected to the fact that R ~ is necessarily not a complete ordered set, e.g. the set of all the infinitesimals has neither supremum nor infimum. We present a solution of these problems with the introduction of the notions of hypernatural number, hypersequence, close supremum and infimum. In this way, we can generalize all the classical theorems for the hyperlimit of a hypersequence. The paper explores ideas that can be applied to other non-Archimedean settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信