Yue Zhang, Bei Liu, Jiaqi Zhai, Qinglei Wang, Susheng Song
{"title":"多种jaz突变体茉莉酸反应的差异调控。","authors":"Yue Zhang, Bei Liu, Jiaqi Zhai, Qinglei Wang, Susheng Song","doi":"10.1080/15592324.2021.1997240","DOIUrl":null,"url":null,"abstract":"<p><p>The phytohormones jasmonates (JAs) regulate diverse aspects of plant growth and defense responses. The JA-ZIM domain (JAZ) family of repressors are targeted by the JA receptor Coronatine Insensitive 1 for ubiquitination and subsequent degradation via the 26S proteasome. We previously investigated the functions of JAZs in JA responses by analyzing <i>jaz</i> mutants of the phylogenetic group I (<i>jaz1/2/5/6</i>), group II/III (<i>jaz10/11/12</i>), group IV/V (<i>jaz3/4/7/9</i> and <i>jaz3/4/7/8/9</i>), and their high-order mutant <i>jaz1/2/3/4/5/6/7/9/10/11/12</i>. Here, we examined JA-regulated root growth, apical hook curvature, flowering time, and defense against the insect <i>Spodoptera exigua</i> in the intermediate <i>jaz</i> mutants <i>jaz1/2/5/6/10/11/12, jaz1/2/3/4/5/6/7/9</i>, and <i>jaz3/4/7/8/9/10/11/12</i>. This study shows that these <i>jaz</i> mutants differentially affect JA responses, suggesting the complexity of JA pathway in these multiple <i>jaz</i> mutants.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"1997240"},"PeriodicalIF":4.6000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8903784/pdf/","citationCount":"2","resultStr":"{\"title\":\"Differential regulation of jasmonate responses in multiple <i>jaz</i> mutants.\",\"authors\":\"Yue Zhang, Bei Liu, Jiaqi Zhai, Qinglei Wang, Susheng Song\",\"doi\":\"10.1080/15592324.2021.1997240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The phytohormones jasmonates (JAs) regulate diverse aspects of plant growth and defense responses. The JA-ZIM domain (JAZ) family of repressors are targeted by the JA receptor Coronatine Insensitive 1 for ubiquitination and subsequent degradation via the 26S proteasome. We previously investigated the functions of JAZs in JA responses by analyzing <i>jaz</i> mutants of the phylogenetic group I (<i>jaz1/2/5/6</i>), group II/III (<i>jaz10/11/12</i>), group IV/V (<i>jaz3/4/7/9</i> and <i>jaz3/4/7/8/9</i>), and their high-order mutant <i>jaz1/2/3/4/5/6/7/9/10/11/12</i>. Here, we examined JA-regulated root growth, apical hook curvature, flowering time, and defense against the insect <i>Spodoptera exigua</i> in the intermediate <i>jaz</i> mutants <i>jaz1/2/5/6/10/11/12, jaz1/2/3/4/5/6/7/9</i>, and <i>jaz3/4/7/8/9/10/11/12</i>. This study shows that these <i>jaz</i> mutants differentially affect JA responses, suggesting the complexity of JA pathway in these multiple <i>jaz</i> mutants.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"1997240\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8903784/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2021.1997240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2021.1997240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Differential regulation of jasmonate responses in multiple jaz mutants.
The phytohormones jasmonates (JAs) regulate diverse aspects of plant growth and defense responses. The JA-ZIM domain (JAZ) family of repressors are targeted by the JA receptor Coronatine Insensitive 1 for ubiquitination and subsequent degradation via the 26S proteasome. We previously investigated the functions of JAZs in JA responses by analyzing jaz mutants of the phylogenetic group I (jaz1/2/5/6), group II/III (jaz10/11/12), group IV/V (jaz3/4/7/9 and jaz3/4/7/8/9), and their high-order mutant jaz1/2/3/4/5/6/7/9/10/11/12. Here, we examined JA-regulated root growth, apical hook curvature, flowering time, and defense against the insect Spodoptera exigua in the intermediate jaz mutants jaz1/2/5/6/10/11/12, jaz1/2/3/4/5/6/7/9, and jaz3/4/7/8/9/10/11/12. This study shows that these jaz mutants differentially affect JA responses, suggesting the complexity of JA pathway in these multiple jaz mutants.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.