脑深部刺激治疗运动障碍:在计算网络模型中探索频率依赖的疗效。

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Biological Cybernetics Pub Date : 2022-02-01 Epub Date: 2021-12-11 DOI:10.1007/s00422-021-00909-2
Konstantinos Spiliotis, Jens Starke, Denise Franz, Angelika Richter, Rüdiger Köhling
{"title":"脑深部刺激治疗运动障碍:在计算网络模型中探索频率依赖的疗效。","authors":"Konstantinos Spiliotis,&nbsp;Jens Starke,&nbsp;Denise Franz,&nbsp;Angelika Richter,&nbsp;Rüdiger Köhling","doi":"10.1007/s00422-021-00909-2","DOIUrl":null,"url":null,"abstract":"<p><p>A large-scale computational model of the basal ganglia network and thalamus is proposed to describe movement disorders and treatment effects of deep brain stimulation (DBS). The model of this complex network considers three areas of the basal ganglia region: the subthalamic nucleus (STN) as target area of DBS, the globus pallidus, both pars externa and pars interna (GPe-GPi), and the thalamus. Parkinsonian conditions are simulated by assuming reduced dopaminergic input and corresponding pronounced inhibitory or disinhibited projections to GPe and GPi. Macroscopic quantities are derived which correlate closely to thalamic responses and hence motor programme fidelity. It can be demonstrated that depending on different levels of striatal projections to the GPe and GPi, the dynamics of these macroscopic quantities (synchronisation index, mean synaptic activity and response efficacy) switch from normal to Parkinsonian conditions. Simulating DBS of the STN affects the dynamics of the entire network, increasing the thalamic activity to levels close to normal, while differing from both normal and Parkinsonian dynamics. Using the mentioned macroscopic quantities, the model proposes optimal DBS frequency ranges above 130 Hz.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866393/pdf/","citationCount":"7","resultStr":"{\"title\":\"Deep brain stimulation for movement disorder treatment: exploring frequency-dependent efficacy in a computational network model.\",\"authors\":\"Konstantinos Spiliotis,&nbsp;Jens Starke,&nbsp;Denise Franz,&nbsp;Angelika Richter,&nbsp;Rüdiger Köhling\",\"doi\":\"10.1007/s00422-021-00909-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A large-scale computational model of the basal ganglia network and thalamus is proposed to describe movement disorders and treatment effects of deep brain stimulation (DBS). The model of this complex network considers three areas of the basal ganglia region: the subthalamic nucleus (STN) as target area of DBS, the globus pallidus, both pars externa and pars interna (GPe-GPi), and the thalamus. Parkinsonian conditions are simulated by assuming reduced dopaminergic input and corresponding pronounced inhibitory or disinhibited projections to GPe and GPi. Macroscopic quantities are derived which correlate closely to thalamic responses and hence motor programme fidelity. It can be demonstrated that depending on different levels of striatal projections to the GPe and GPi, the dynamics of these macroscopic quantities (synchronisation index, mean synaptic activity and response efficacy) switch from normal to Parkinsonian conditions. Simulating DBS of the STN affects the dynamics of the entire network, increasing the thalamic activity to levels close to normal, while differing from both normal and Parkinsonian dynamics. Using the mentioned macroscopic quantities, the model proposes optimal DBS frequency ranges above 130 Hz.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866393/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-021-00909-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-021-00909-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 7

摘要

提出了一个大规模的基底神经节网络和丘脑的计算模型来描述运动障碍和深部脑刺激(DBS)的治疗效果。这个复杂网络的模型考虑了基底节区域的三个区域:丘脑下核(STN)作为DBS的目标区域,苍白球,外部和内部(GPe-GPi)和丘脑。通过假设多巴胺能输入减少和相应的GPe和GPi的明显抑制或去抑制投射来模拟帕金森病。宏观数量的推导与丘脑反应密切相关,因此运动程序的保真度。可以证明,根据纹状体对GPe和GPi的不同水平的投射,这些宏观数量(同步指数、平均突触活动和反应功效)的动态从正常状态切换到帕金森状态。模拟STN的DBS会影响整个网络的动态,将丘脑活动增加到接近正常的水平,但与正常和帕金森动力学不同。利用上述宏观量,该模型提出了130 Hz以上的DBS最佳频率范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep brain stimulation for movement disorder treatment: exploring frequency-dependent efficacy in a computational network model.

Deep brain stimulation for movement disorder treatment: exploring frequency-dependent efficacy in a computational network model.

Deep brain stimulation for movement disorder treatment: exploring frequency-dependent efficacy in a computational network model.

Deep brain stimulation for movement disorder treatment: exploring frequency-dependent efficacy in a computational network model.

A large-scale computational model of the basal ganglia network and thalamus is proposed to describe movement disorders and treatment effects of deep brain stimulation (DBS). The model of this complex network considers three areas of the basal ganglia region: the subthalamic nucleus (STN) as target area of DBS, the globus pallidus, both pars externa and pars interna (GPe-GPi), and the thalamus. Parkinsonian conditions are simulated by assuming reduced dopaminergic input and corresponding pronounced inhibitory or disinhibited projections to GPe and GPi. Macroscopic quantities are derived which correlate closely to thalamic responses and hence motor programme fidelity. It can be demonstrated that depending on different levels of striatal projections to the GPe and GPi, the dynamics of these macroscopic quantities (synchronisation index, mean synaptic activity and response efficacy) switch from normal to Parkinsonian conditions. Simulating DBS of the STN affects the dynamics of the entire network, increasing the thalamic activity to levels close to normal, while differing from both normal and Parkinsonian dynamics. Using the mentioned macroscopic quantities, the model proposes optimal DBS frequency ranges above 130 Hz.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信