非编码变异体表达调节潜力的计算评估

IF 11.5 2区 生物学 Q1 GENETICS & HEREDITY
Genomics, Proteomics & Bioinformatics Pub Date : 2023-06-01 Epub Date: 2021-12-07 DOI:10.1016/j.gpb.2021.10.003
Fang-Yuan Shi, Yu Wang, Dong Huang, Yu Liang, Nan Liang, Xiao-Wei Chen, Ge Gao
{"title":"非编码变异体表达调节潜力的计算评估","authors":"Fang-Yuan Shi, Yu Wang, Dong Huang, Yu Liang, Nan Liang, Xiao-Wei Chen, Ge Gao","doi":"10.1016/j.gpb.2021.10.003","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) studies have identified multiple non-coding variants associated with genetic diseases by affecting gene expression. However, pinpointing causal variants effectively and efficiently remains a serious challenge. Here, we developed CARMEN, a novel algorithm to identify functional non-coding expression-modulating variants. Multiple evaluations demonstrated CARMEN's superior performance over state-of-the-art tools. Applying CARMEN to GWAS and eQTL datasets further pinpointed several causal variants other than the reported lead single-nucleotide polymorphisms (SNPs). CARMEN scales well with the massive datasets, and is available online as a web server at http://carmen.gao-lab.org.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":" ","pages":"662-673"},"PeriodicalIF":11.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787178/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational Assessment of the Expression-modulating Potential for Non-coding Variants.\",\"authors\":\"Fang-Yuan Shi, Yu Wang, Dong Huang, Yu Liang, Nan Liang, Xiao-Wei Chen, Ge Gao\",\"doi\":\"10.1016/j.gpb.2021.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large-scale genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) studies have identified multiple non-coding variants associated with genetic diseases by affecting gene expression. However, pinpointing causal variants effectively and efficiently remains a serious challenge. Here, we developed CARMEN, a novel algorithm to identify functional non-coding expression-modulating variants. Multiple evaluations demonstrated CARMEN's superior performance over state-of-the-art tools. Applying CARMEN to GWAS and eQTL datasets further pinpointed several causal variants other than the reported lead single-nucleotide polymorphisms (SNPs). CARMEN scales well with the massive datasets, and is available online as a web server at http://carmen.gao-lab.org.</p>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\" \",\"pages\":\"662-673\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787178/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gpb.2021.10.003\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gpb.2021.10.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

大规模的全基因组关联研究(GWAS)和表达量性状位点研究(eQTL)发现了多种通过影响基因表达而与遗传病相关的非编码变异。然而,有效、高效地精确定位因果变异仍然是一个严峻的挑战。在此,我们开发了一种新型算法 CARMEN,用于识别功能性非编码表达调节变异。多项评估表明,CARMEN 的性能优于最先进的工具。将CARMEN应用于GWAS和eQTL数据集,进一步精确定位了除已报道的前导单核苷酸多态性(SNPs)之外的几个因果变异。CARMEN 可以很好地扩展海量数据集,并可作为网络服务器在 http://carmen.gao-lab.org 上在线使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Assessment of the Expression-modulating Potential for Non-coding Variants.

Large-scale genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) studies have identified multiple non-coding variants associated with genetic diseases by affecting gene expression. However, pinpointing causal variants effectively and efficiently remains a serious challenge. Here, we developed CARMEN, a novel algorithm to identify functional non-coding expression-modulating variants. Multiple evaluations demonstrated CARMEN's superior performance over state-of-the-art tools. Applying CARMEN to GWAS and eQTL datasets further pinpointed several causal variants other than the reported lead single-nucleotide polymorphisms (SNPs). CARMEN scales well with the massive datasets, and is available online as a web server at http://carmen.gao-lab.org.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genomics, Proteomics & Bioinformatics
Genomics, Proteomics & Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.30
自引率
4.20%
发文量
844
审稿时长
61 days
期刊介绍: Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信