{"title":"小核糖核酸病毒RNA依赖RNA聚合酶核苷酸加成周期的结构基础。","authors":"Peng Gong","doi":"10.1016/bs.enz.2021.06.002","DOIUrl":null,"url":null,"abstract":"<p><p>RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of processive nucleic acid polymerases, carrying out DNA-independent replication/transcription processes. Although viral RdRPs have versatile global structures, they do share a structurally highly conserved active site comprising catalytic motifs A-G. In spite of different initiation modes, the nucleotide addition cycle (NAC) in the RdRP elongation phase probably follows consistent mechanisms. In this chapter, representative structures of picornavirus RdRP elongation complexes are used to illustrate RdRP NAC mechanisms. In the pre-chemistry part of the NAC, RdRPs utilize a unique palm domain-based active site closure that can be further decomposed into two sequential steps. In the post-chemistry part of the NAC, the translocation process is stringently controlled by the RdRP-specific motif G, resulting in asymmetric movements of the template-product RNA. Future efforts to elucidate regulation/intervention mechanisms by mismatched NTPs or nucleotide analog antivirals are necessary to achieve comprehensive understandings of viral RdRP NAC.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"215-233"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Structural basis of viral RNA-dependent RNA polymerase nucleotide addition cycle in picornaviruses.\",\"authors\":\"Peng Gong\",\"doi\":\"10.1016/bs.enz.2021.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of processive nucleic acid polymerases, carrying out DNA-independent replication/transcription processes. Although viral RdRPs have versatile global structures, they do share a structurally highly conserved active site comprising catalytic motifs A-G. In spite of different initiation modes, the nucleotide addition cycle (NAC) in the RdRP elongation phase probably follows consistent mechanisms. In this chapter, representative structures of picornavirus RdRP elongation complexes are used to illustrate RdRP NAC mechanisms. In the pre-chemistry part of the NAC, RdRPs utilize a unique palm domain-based active site closure that can be further decomposed into two sequential steps. In the post-chemistry part of the NAC, the translocation process is stringently controlled by the RdRP-specific motif G, resulting in asymmetric movements of the template-product RNA. Future efforts to elucidate regulation/intervention mechanisms by mismatched NTPs or nucleotide analog antivirals are necessary to achieve comprehensive understandings of viral RdRP NAC.</p>\",\"PeriodicalId\":39097,\"journal\":{\"name\":\"Enzymes\",\"volume\":\" \",\"pages\":\"215-233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzymes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.enz.2021.06.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzymes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.enz.2021.06.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Structural basis of viral RNA-dependent RNA polymerase nucleotide addition cycle in picornaviruses.
RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses represent a unique class of processive nucleic acid polymerases, carrying out DNA-independent replication/transcription processes. Although viral RdRPs have versatile global structures, they do share a structurally highly conserved active site comprising catalytic motifs A-G. In spite of different initiation modes, the nucleotide addition cycle (NAC) in the RdRP elongation phase probably follows consistent mechanisms. In this chapter, representative structures of picornavirus RdRP elongation complexes are used to illustrate RdRP NAC mechanisms. In the pre-chemistry part of the NAC, RdRPs utilize a unique palm domain-based active site closure that can be further decomposed into two sequential steps. In the post-chemistry part of the NAC, the translocation process is stringently controlled by the RdRP-specific motif G, resulting in asymmetric movements of the template-product RNA. Future efforts to elucidate regulation/intervention mechanisms by mismatched NTPs or nucleotide analog antivirals are necessary to achieve comprehensive understandings of viral RdRP NAC.