最小自然细胞中密码子的使用。

IF 1.9 4区 物理与天体物理 Q2 BIOLOGY
Piotr H Pawłowski
{"title":"最小自然细胞中密码子的使用。","authors":"Piotr H Pawłowski","doi":"10.1007/s11084-021-09616-1","DOIUrl":null,"url":null,"abstract":"<p><p>A statistical analysis of the variation in contents with the size of the current known smallest genomes, N. deltocephalinicola, C. ruddii, N. equitans, and M. genitalium, enabled the indication of a minimal set of codons capable of naturally building a modern-type free-living unicellular organism in an early stage of evolution. Using a linear regression model, the potential codon distribution in the minimal natural cell was predicted and compared to the composition of the smallest synthetic, JCVI-Syn3.0. The distribution of the molecular weight of potentially coded amino acids was also calculated. The main differences in the features of the minimal natural cell and H. Sapiens genome were analyzed. In this regard, the content percentage of respective amino acids and their polarization charge properties were reported and compared. The fractions of occurring nucleotides were calculated, too. Then, the estimated numbers of codons in a minimal natural cell were related to the expected numbers for random distribution. Shown increase, or decrease in the contents, relative to the calculated random filling was related to the evolutionary preferences, varying with the subsequent eras of the evolution of genetic code.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":"51 3","pages":"215-230"},"PeriodicalIF":1.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Codon Usage in the Minimal Natural Cell.\",\"authors\":\"Piotr H Pawłowski\",\"doi\":\"10.1007/s11084-021-09616-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A statistical analysis of the variation in contents with the size of the current known smallest genomes, N. deltocephalinicola, C. ruddii, N. equitans, and M. genitalium, enabled the indication of a minimal set of codons capable of naturally building a modern-type free-living unicellular organism in an early stage of evolution. Using a linear regression model, the potential codon distribution in the minimal natural cell was predicted and compared to the composition of the smallest synthetic, JCVI-Syn3.0. The distribution of the molecular weight of potentially coded amino acids was also calculated. The main differences in the features of the minimal natural cell and H. Sapiens genome were analyzed. In this regard, the content percentage of respective amino acids and their polarization charge properties were reported and compared. The fractions of occurring nucleotides were calculated, too. Then, the estimated numbers of codons in a minimal natural cell were related to the expected numbers for random distribution. Shown increase, or decrease in the contents, relative to the calculated random filling was related to the evolutionary preferences, varying with the subsequent eras of the evolution of genetic code.</p>\",\"PeriodicalId\":19614,\"journal\":{\"name\":\"Origins of Life and Evolution of Biospheres\",\"volume\":\"51 3\",\"pages\":\"215-230\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Origins of Life and Evolution of Biospheres\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11084-021-09616-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-021-09616-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对目前已知的最小基因组(deltocephalinicola、C. ruddii、N. equitans和M. genitalium)的内容差异进行统计分析,表明在进化的早期阶段,有一组最小的密码子能够自然地构建现代类型的自由生活的单细胞生物。利用线性回归模型预测了最小天然细胞的潜在密码子分布,并与最小合成细胞JCVI-Syn3.0的组成进行了比较。还计算了潜在编码氨基酸的分子量分布。分析了最小自然细胞与智人基因组特征的主要差异。在这方面,报道并比较了各自氨基酸的含量百分比及其极化电荷性质。发生的核苷酸的分数也被计算出来。然后,将最小自然细胞中密码子的估计数目与随机分布的期望数目相关联。相对于计算的随机填充量,其含量的增加或减少与进化偏好有关,随遗传密码进化的后续时代而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Codon Usage in the Minimal Natural Cell.

A statistical analysis of the variation in contents with the size of the current known smallest genomes, N. deltocephalinicola, C. ruddii, N. equitans, and M. genitalium, enabled the indication of a minimal set of codons capable of naturally building a modern-type free-living unicellular organism in an early stage of evolution. Using a linear regression model, the potential codon distribution in the minimal natural cell was predicted and compared to the composition of the smallest synthetic, JCVI-Syn3.0. The distribution of the molecular weight of potentially coded amino acids was also calculated. The main differences in the features of the minimal natural cell and H. Sapiens genome were analyzed. In this regard, the content percentage of respective amino acids and their polarization charge properties were reported and compared. The fractions of occurring nucleotides were calculated, too. Then, the estimated numbers of codons in a minimal natural cell were related to the expected numbers for random distribution. Shown increase, or decrease in the contents, relative to the calculated random filling was related to the evolutionary preferences, varying with the subsequent eras of the evolution of genetic code.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
15.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信