{"title":"烟酰胺核苷在阿尔茨海默病中对cGAS-STING通路的调节。","authors":"James W Larrick, Andrew R Mendelsohn","doi":"10.1089/rej.2021.0062","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies demonstrate a global decrease in nicotinamide adenine dinucleotide (NAD+) with aging. This decline is associated with the development of several of the hallmarks of aging such as reduced mitophagy and neuroinflammation, processes thought to play a significant role in the progression of Alzheimer's disease (AD). Augmentation of NAD+ by oral administration of a precursor, nicotinamide riboside (NR), reduces senescence of affected cells, attenuates DNA damage and neuroinflammation in the transgenic APP/PS1 murine model of AD. Inflammation mediated by microglial cells plays an important role in progression of AD and other neurodegenerative diseases. The cytoplasmic DNA sensor, cyclic GMP-AMP synthase (cGAS) and downstream stimulator of interferon genes (STING), generates an interferon signature characteristic of senescence and inflammaging in the brain of AD mice. Elevated cGAS-STING observed in the AD mouse brains and human AD fibroblasts was normalized by NR. This intervention also increased mitophagy with improved cognition and behavior in the APP/PS1 mice. These studies suggest that modulation of the cGAS-STING pathway may benefit AD patients and possibly other disorders characterized by compromised mitophagy and excessive neuroinflammation.</p>","PeriodicalId":20979,"journal":{"name":"Rejuvenation research","volume":"24 5","pages":"397-402"},"PeriodicalIF":2.2000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Modulation of cGAS-STING Pathway by Nicotinamide Riboside in Alzheimer's Disease.\",\"authors\":\"James W Larrick, Andrew R Mendelsohn\",\"doi\":\"10.1089/rej.2021.0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous studies demonstrate a global decrease in nicotinamide adenine dinucleotide (NAD+) with aging. This decline is associated with the development of several of the hallmarks of aging such as reduced mitophagy and neuroinflammation, processes thought to play a significant role in the progression of Alzheimer's disease (AD). Augmentation of NAD+ by oral administration of a precursor, nicotinamide riboside (NR), reduces senescence of affected cells, attenuates DNA damage and neuroinflammation in the transgenic APP/PS1 murine model of AD. Inflammation mediated by microglial cells plays an important role in progression of AD and other neurodegenerative diseases. The cytoplasmic DNA sensor, cyclic GMP-AMP synthase (cGAS) and downstream stimulator of interferon genes (STING), generates an interferon signature characteristic of senescence and inflammaging in the brain of AD mice. Elevated cGAS-STING observed in the AD mouse brains and human AD fibroblasts was normalized by NR. This intervention also increased mitophagy with improved cognition and behavior in the APP/PS1 mice. These studies suggest that modulation of the cGAS-STING pathway may benefit AD patients and possibly other disorders characterized by compromised mitophagy and excessive neuroinflammation.</p>\",\"PeriodicalId\":20979,\"journal\":{\"name\":\"Rejuvenation research\",\"volume\":\"24 5\",\"pages\":\"397-402\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rejuvenation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/rej.2021.0062\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rejuvenation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/rej.2021.0062","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Modulation of cGAS-STING Pathway by Nicotinamide Riboside in Alzheimer's Disease.
Numerous studies demonstrate a global decrease in nicotinamide adenine dinucleotide (NAD+) with aging. This decline is associated with the development of several of the hallmarks of aging such as reduced mitophagy and neuroinflammation, processes thought to play a significant role in the progression of Alzheimer's disease (AD). Augmentation of NAD+ by oral administration of a precursor, nicotinamide riboside (NR), reduces senescence of affected cells, attenuates DNA damage and neuroinflammation in the transgenic APP/PS1 murine model of AD. Inflammation mediated by microglial cells plays an important role in progression of AD and other neurodegenerative diseases. The cytoplasmic DNA sensor, cyclic GMP-AMP synthase (cGAS) and downstream stimulator of interferon genes (STING), generates an interferon signature characteristic of senescence and inflammaging in the brain of AD mice. Elevated cGAS-STING observed in the AD mouse brains and human AD fibroblasts was normalized by NR. This intervention also increased mitophagy with improved cognition and behavior in the APP/PS1 mice. These studies suggest that modulation of the cGAS-STING pathway may benefit AD patients and possibly other disorders characterized by compromised mitophagy and excessive neuroinflammation.
期刊介绍:
Rejuvenation Research publishes cutting-edge, peer-reviewed research on rejuvenation therapies in the laboratory and the clinic. The Journal focuses on key explorations and advances that may ultimately contribute to slowing or reversing the aging process, and covers topics such as cardiovascular aging, DNA damage and repair, cloning, and cell immortalization and senescence.
Rejuvenation Research coverage includes:
Cell immortalization and senescence
Pluripotent stem cells
DNA damage/repair
Gene targeting, gene therapy, and genomics
Growth factors and nutrient supply/sensing
Immunosenescence
Comparative biology of aging
Tissue engineering
Late-life pathologies (cardiovascular, neurodegenerative and others)
Public policy and social context.