{"title":"La0.67Ca0.33MnO3薄膜磁场诱导的各向异性太赫兹传输。","authors":"Hongying Mei, Peng Zhang, Shile Zhang, Ruxian Yao, Haizi Yao, Feng Chen, Zhenyou Wang, Fuhai Su","doi":"10.1063/4.0000123","DOIUrl":null,"url":null,"abstract":"<p><p>A systemic investigation of the terahertz (THz) transmission of La<sub>0.67</sub>Ca<sub>0.33</sub>MnO<sub>3</sub> film on the (001)-oriented NdGaO<sub>3</sub> substrate under external magnetic field and low temperature have been performed. The significant THz absorption difference between the out-of-plane and the in-plane magnetic field direction is observed, which is consistent with the electrical transport measurement using the standard four-probe technique. Furthermore, we find that the complex THz conductivities can be reproduced in terms of the Drude Smith equation as the magnetic field is perpendicular to the film plane, whereas it deviates from this model when the in-plane magnetic field is applied. We suggest that such anisotropies in THz transport dynamics have close correspondences with the phase separation and anisotropic magnetoresistance effects in the perovskite-structured manganites. Our work demonstrates that the THz time-domain spectroscopy (TDS) can be an effective non-contact method for studying the magneto-transport properties of the perovskite-structured manganites.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494497/pdf/","citationCount":"1","resultStr":"{\"title\":\"Anisotropic terahertz transmission induced by the external magnetic field in La<sub>0.67</sub>Ca<sub>0.33</sub>MnO<sub>3</sub> film.\",\"authors\":\"Hongying Mei, Peng Zhang, Shile Zhang, Ruxian Yao, Haizi Yao, Feng Chen, Zhenyou Wang, Fuhai Su\",\"doi\":\"10.1063/4.0000123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A systemic investigation of the terahertz (THz) transmission of La<sub>0.67</sub>Ca<sub>0.33</sub>MnO<sub>3</sub> film on the (001)-oriented NdGaO<sub>3</sub> substrate under external magnetic field and low temperature have been performed. The significant THz absorption difference between the out-of-plane and the in-plane magnetic field direction is observed, which is consistent with the electrical transport measurement using the standard four-probe technique. Furthermore, we find that the complex THz conductivities can be reproduced in terms of the Drude Smith equation as the magnetic field is perpendicular to the film plane, whereas it deviates from this model when the in-plane magnetic field is applied. We suggest that such anisotropies in THz transport dynamics have close correspondences with the phase separation and anisotropic magnetoresistance effects in the perovskite-structured manganites. Our work demonstrates that the THz time-domain spectroscopy (TDS) can be an effective non-contact method for studying the magneto-transport properties of the perovskite-structured manganites.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494497/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000123\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000123","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Anisotropic terahertz transmission induced by the external magnetic field in La0.67Ca0.33MnO3 film.
A systemic investigation of the terahertz (THz) transmission of La0.67Ca0.33MnO3 film on the (001)-oriented NdGaO3 substrate under external magnetic field and low temperature have been performed. The significant THz absorption difference between the out-of-plane and the in-plane magnetic field direction is observed, which is consistent with the electrical transport measurement using the standard four-probe technique. Furthermore, we find that the complex THz conductivities can be reproduced in terms of the Drude Smith equation as the magnetic field is perpendicular to the film plane, whereas it deviates from this model when the in-plane magnetic field is applied. We suggest that such anisotropies in THz transport dynamics have close correspondences with the phase separation and anisotropic magnetoresistance effects in the perovskite-structured manganites. Our work demonstrates that the THz time-domain spectroscopy (TDS) can be an effective non-contact method for studying the magneto-transport properties of the perovskite-structured manganites.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.