Ashley N Dalrymple, Jordyn E Ting, Rohit Bose, Stephan Nieuwoudt, Manfred Franke, Kip A Ludwig, Andrew J Shoffstall, Lee E Fisher, Douglas J Weber
{"title":"用电极刺激背根神经节募集初级传入事件。","authors":"Ashley N Dalrymple, Jordyn E Ting, Rohit Bose, Stephan Nieuwoudt, Manfred Franke, Kip A Ludwig, Andrew J Shoffstall, Lee E Fisher, Douglas J Weber","doi":"10.1109/ner49283.2021.9441420","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic pain affects millions of people in the United States and pharmacological treatments have been ineffective. Dorsal root ganglion (DRG) stimulation is a neuromodulation method that delivers electrical stimulation to the DRG to relieve pain. DRG electrodes are rigid and cylindrical. The implantation of DRG electrodes requires a technically-challenging surgery that involves steering electrodes laterally towards the DRG. The Injectrode is an injectable conductive polymer that cures in place and is capable of delivering electrical current to stimulate neural tissue. We used the Injectrode to stimulate the L6 and L7 DRG in cats, measuring neural responses evoked in the sciatic, tibial, and common peroneal nerves to measure the thresholds for activating fibers. A cylindrical stainless-steel electrode was used for comparison. Thresholds were 38% higher with the Injectrode versus stainless-steel, likely owing to its larger contact surface area with the DRG. Both Aα and Aβ sensory fibers were activated using DRG stimulation. The Injectrode has the potential to offer a new and simple method for DRG stimulation that can potentially offer more complete coverage of the DRG.</p>","PeriodicalId":73414,"journal":{"name":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","volume":" ","pages":"609-612"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ner49283.2021.9441420","citationCount":"0","resultStr":"{\"title\":\"Recruitment of Primary Afferents by Dorsal Root Ganglion Stimulation using the Injectrode.\",\"authors\":\"Ashley N Dalrymple, Jordyn E Ting, Rohit Bose, Stephan Nieuwoudt, Manfred Franke, Kip A Ludwig, Andrew J Shoffstall, Lee E Fisher, Douglas J Weber\",\"doi\":\"10.1109/ner49283.2021.9441420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic pain affects millions of people in the United States and pharmacological treatments have been ineffective. Dorsal root ganglion (DRG) stimulation is a neuromodulation method that delivers electrical stimulation to the DRG to relieve pain. DRG electrodes are rigid and cylindrical. The implantation of DRG electrodes requires a technically-challenging surgery that involves steering electrodes laterally towards the DRG. The Injectrode is an injectable conductive polymer that cures in place and is capable of delivering electrical current to stimulate neural tissue. We used the Injectrode to stimulate the L6 and L7 DRG in cats, measuring neural responses evoked in the sciatic, tibial, and common peroneal nerves to measure the thresholds for activating fibers. A cylindrical stainless-steel electrode was used for comparison. Thresholds were 38% higher with the Injectrode versus stainless-steel, likely owing to its larger contact surface area with the DRG. Both Aα and Aβ sensory fibers were activated using DRG stimulation. The Injectrode has the potential to offer a new and simple method for DRG stimulation that can potentially offer more complete coverage of the DRG.</p>\",\"PeriodicalId\":73414,\"journal\":{\"name\":\"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering\",\"volume\":\" \",\"pages\":\"609-612\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ner49283.2021.9441420\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ner49283.2021.9441420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ner49283.2021.9441420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Recruitment of Primary Afferents by Dorsal Root Ganglion Stimulation using the Injectrode.
Chronic pain affects millions of people in the United States and pharmacological treatments have been ineffective. Dorsal root ganglion (DRG) stimulation is a neuromodulation method that delivers electrical stimulation to the DRG to relieve pain. DRG electrodes are rigid and cylindrical. The implantation of DRG electrodes requires a technically-challenging surgery that involves steering electrodes laterally towards the DRG. The Injectrode is an injectable conductive polymer that cures in place and is capable of delivering electrical current to stimulate neural tissue. We used the Injectrode to stimulate the L6 and L7 DRG in cats, measuring neural responses evoked in the sciatic, tibial, and common peroneal nerves to measure the thresholds for activating fibers. A cylindrical stainless-steel electrode was used for comparison. Thresholds were 38% higher with the Injectrode versus stainless-steel, likely owing to its larger contact surface area with the DRG. Both Aα and Aβ sensory fibers were activated using DRG stimulation. The Injectrode has the potential to offer a new and simple method for DRG stimulation that can potentially offer more complete coverage of the DRG.