{"title":"新型冠状病毒肺炎患者自愿调查与精准医疗智能健康系统。","authors":"Zeeshan Ahmed","doi":"10.2217/pme-2021-0068","DOIUrl":null,"url":null,"abstract":"<p><p>Advancing frontiers of clinical research, we discuss the need for intelligent health systems to support a deeper investigation of COVID-19. We hypothesize that the convergence of the healthcare data and staggering developments in artificial intelligence have the potential to elevate the recovery process with diagnostic and predictive analysis to identify major causes of mortality, modifiable risk factors and actionable information that supports the early detection and prevention of COVID-19. However, current constraints include the recruitment of COVID-19 patients for research; translational integration of electronic health records and diversified public datasets; and the development of artificial intelligence systems for data-intensive computational modeling to assist clinical decision making. We propose a novel nexus of machine learning algorithms to examine COVID-19 data granularity from population studies to subgroups stratification and ensure best modeling strategies within the data continuum.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"18 6","pages":"573-582"},"PeriodicalIF":16.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544483/pdf/","citationCount":"3","resultStr":"{\"title\":\"Intelligent health system for the investigation of consenting COVID-19 patients and precision medicine.\",\"authors\":\"Zeeshan Ahmed\",\"doi\":\"10.2217/pme-2021-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancing frontiers of clinical research, we discuss the need for intelligent health systems to support a deeper investigation of COVID-19. We hypothesize that the convergence of the healthcare data and staggering developments in artificial intelligence have the potential to elevate the recovery process with diagnostic and predictive analysis to identify major causes of mortality, modifiable risk factors and actionable information that supports the early detection and prevention of COVID-19. However, current constraints include the recruitment of COVID-19 patients for research; translational integration of electronic health records and diversified public datasets; and the development of artificial intelligence systems for data-intensive computational modeling to assist clinical decision making. We propose a novel nexus of machine learning algorithms to examine COVID-19 data granularity from population studies to subgroups stratification and ensure best modeling strategies within the data continuum.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"18 6\",\"pages\":\"573-582\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544483/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2217/pme-2021-0068\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2217/pme-2021-0068","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Intelligent health system for the investigation of consenting COVID-19 patients and precision medicine.
Advancing frontiers of clinical research, we discuss the need for intelligent health systems to support a deeper investigation of COVID-19. We hypothesize that the convergence of the healthcare data and staggering developments in artificial intelligence have the potential to elevate the recovery process with diagnostic and predictive analysis to identify major causes of mortality, modifiable risk factors and actionable information that supports the early detection and prevention of COVID-19. However, current constraints include the recruitment of COVID-19 patients for research; translational integration of electronic health records and diversified public datasets; and the development of artificial intelligence systems for data-intensive computational modeling to assist clinical decision making. We propose a novel nexus of machine learning algorithms to examine COVID-19 data granularity from population studies to subgroups stratification and ensure best modeling strategies within the data continuum.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.