用于关系推理的互补结构学习神经网络。

Jacob Russin, Maryam Zolfaghar, Seongmin A Park, Erie Boorman, Randall C O'Reilly
{"title":"用于关系推理的互补结构学习神经网络。","authors":"Jacob Russin,&nbsp;Maryam Zolfaghar,&nbsp;Seongmin A Park,&nbsp;Erie Boorman,&nbsp;Randall C O'Reilly","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The neural mechanisms supporting flexible relational inferences, especially in novel situations, are a major focus of current research. In the complementary learning systems framework, pattern separation in the hippocampus allows rapid learning in novel environments, while slower learning in neocortex accumulates small weight changes to extract systematic structure from well-learned environments. In this work, we adapt this framework to a task from a recent fMRI experiment where novel transitive inferences must be made according to implicit relational structure. We show that computational models capturing the basic cognitive properties of these two systems can explain relational transitive inferences in both familiar and novel environments, and reproduce key phenomena observed in the fMRI experiment.</p>","PeriodicalId":72634,"journal":{"name":"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference","volume":"2021 ","pages":"1560-1566"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491570/pdf/nihms-1741694.pdf","citationCount":"0","resultStr":"{\"title\":\"Complementary Structure-Learning Neural Networks for Relational Reasoning.\",\"authors\":\"Jacob Russin,&nbsp;Maryam Zolfaghar,&nbsp;Seongmin A Park,&nbsp;Erie Boorman,&nbsp;Randall C O'Reilly\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The neural mechanisms supporting flexible relational inferences, especially in novel situations, are a major focus of current research. In the complementary learning systems framework, pattern separation in the hippocampus allows rapid learning in novel environments, while slower learning in neocortex accumulates small weight changes to extract systematic structure from well-learned environments. In this work, we adapt this framework to a task from a recent fMRI experiment where novel transitive inferences must be made according to implicit relational structure. We show that computational models capturing the basic cognitive properties of these two systems can explain relational transitive inferences in both familiar and novel environments, and reproduce key phenomena observed in the fMRI experiment.</p>\",\"PeriodicalId\":72634,\"journal\":{\"name\":\"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference\",\"volume\":\"2021 \",\"pages\":\"1560-1566\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491570/pdf/nihms-1741694.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

支持灵活关系推理的神经机制,特别是在新情况下的神经机制,是当前研究的一个主要焦点。在互补学习系统框架中,海马体中的模式分离允许在新环境中快速学习,而新皮层中较慢的学习积累了小的权重变化,以从已习得的环境中提取系统结构。在这项工作中,我们将该框架适应于最近的功能磁共振成像实验任务,其中必须根据隐式关系结构做出新的传递推理。我们发现,捕捉这两个系统的基本认知特性的计算模型可以解释在熟悉和新环境中的关系传递推理,并重现在功能磁共振成像实验中观察到的关键现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Complementary Structure-Learning Neural Networks for Relational Reasoning.

Complementary Structure-Learning Neural Networks for Relational Reasoning.

The neural mechanisms supporting flexible relational inferences, especially in novel situations, are a major focus of current research. In the complementary learning systems framework, pattern separation in the hippocampus allows rapid learning in novel environments, while slower learning in neocortex accumulates small weight changes to extract systematic structure from well-learned environments. In this work, we adapt this framework to a task from a recent fMRI experiment where novel transitive inferences must be made according to implicit relational structure. We show that computational models capturing the basic cognitive properties of these two systems can explain relational transitive inferences in both familiar and novel environments, and reproduce key phenomena observed in the fMRI experiment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信