Maiara Hartwig Bessa, Francine Cenzi de Ré, Rafael Dias de Moura, Elgion Lucio Loreto, Lizandra Jaqueline Robe
{"title":"果蝇科的比较有丝分裂基因组学和双翅目果蝇属群的进化。","authors":"Maiara Hartwig Bessa, Francine Cenzi de Ré, Rafael Dias de Moura, Elgion Lucio Loreto, Lizandra Jaqueline Robe","doi":"10.1007/s10709-021-00132-8","DOIUrl":null,"url":null,"abstract":"<p><p>The Zygothrica genus group of Drosophilidae encompasses more than 437 species and five genera. Although knowledge regarding its diversity has increased, uncertainties about its monophyly and position within Drosophilidae remain. Genomic approaches have been widely used to address different phylogenetic questions and analyses involving the mitogenome have revealed a cost-efficient tool to these studies. Thus, this work aims to characterize mitogenomes of three species of the Zygothrica genus group (from the Hirtodrosophila, Paraliodrosophila and Zygothrica genera), while comparing them with orthologous sequences from other 23 Drosophilidae species and addressing their phylogenetic position. General content concerning gene order and overlap, nucleotide composition, start and stop codon, codon usage and tRNA structures were compared, and phylogenetic trees were constructed under different datasets. The complete mitogenomes characterized for H. subflavohalterata affinis H002 and P. antennta present the PanCrustacea gene order with 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, 13 protein coding genes and an A+T rich region with two T-stretched elements. Some peculiarities such as the almost complete overlap of genes tRNAH/ND4, tRNAF/ND5 and tRNAS2/ND1 are reported for different Drosophilidae species. Non-canonical secondary structures were encountered for tRNAS1 and tRNAY, revealing patterns that apply at different phylogenetic scales. According to the best depiction of the mitogenomes evolutionary history, the three Neotropical species of the Zygothrica genus group encompass a monophyletic lineage sister to Zaprionus, composing with this genus a clade that is sister to the Drosophila subgenus.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"149 5-6","pages":"267-281"},"PeriodicalIF":1.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparative mitogenomics of Drosophilidae and the evolution of the Zygothrica genus group (Diptera, Drosophilidae).\",\"authors\":\"Maiara Hartwig Bessa, Francine Cenzi de Ré, Rafael Dias de Moura, Elgion Lucio Loreto, Lizandra Jaqueline Robe\",\"doi\":\"10.1007/s10709-021-00132-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Zygothrica genus group of Drosophilidae encompasses more than 437 species and five genera. Although knowledge regarding its diversity has increased, uncertainties about its monophyly and position within Drosophilidae remain. Genomic approaches have been widely used to address different phylogenetic questions and analyses involving the mitogenome have revealed a cost-efficient tool to these studies. Thus, this work aims to characterize mitogenomes of three species of the Zygothrica genus group (from the Hirtodrosophila, Paraliodrosophila and Zygothrica genera), while comparing them with orthologous sequences from other 23 Drosophilidae species and addressing their phylogenetic position. General content concerning gene order and overlap, nucleotide composition, start and stop codon, codon usage and tRNA structures were compared, and phylogenetic trees were constructed under different datasets. The complete mitogenomes characterized for H. subflavohalterata affinis H002 and P. antennta present the PanCrustacea gene order with 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, 13 protein coding genes and an A+T rich region with two T-stretched elements. Some peculiarities such as the almost complete overlap of genes tRNAH/ND4, tRNAF/ND5 and tRNAS2/ND1 are reported for different Drosophilidae species. Non-canonical secondary structures were encountered for tRNAS1 and tRNAY, revealing patterns that apply at different phylogenetic scales. According to the best depiction of the mitogenomes evolutionary history, the three Neotropical species of the Zygothrica genus group encompass a monophyletic lineage sister to Zaprionus, composing with this genus a clade that is sister to the Drosophila subgenus.</p>\",\"PeriodicalId\":55121,\"journal\":{\"name\":\"Genetica\",\"volume\":\"149 5-6\",\"pages\":\"267-281\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10709-021-00132-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-021-00132-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Comparative mitogenomics of Drosophilidae and the evolution of the Zygothrica genus group (Diptera, Drosophilidae).
The Zygothrica genus group of Drosophilidae encompasses more than 437 species and five genera. Although knowledge regarding its diversity has increased, uncertainties about its monophyly and position within Drosophilidae remain. Genomic approaches have been widely used to address different phylogenetic questions and analyses involving the mitogenome have revealed a cost-efficient tool to these studies. Thus, this work aims to characterize mitogenomes of three species of the Zygothrica genus group (from the Hirtodrosophila, Paraliodrosophila and Zygothrica genera), while comparing them with orthologous sequences from other 23 Drosophilidae species and addressing their phylogenetic position. General content concerning gene order and overlap, nucleotide composition, start and stop codon, codon usage and tRNA structures were compared, and phylogenetic trees were constructed under different datasets. The complete mitogenomes characterized for H. subflavohalterata affinis H002 and P. antennta present the PanCrustacea gene order with 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, 13 protein coding genes and an A+T rich region with two T-stretched elements. Some peculiarities such as the almost complete overlap of genes tRNAH/ND4, tRNAF/ND5 and tRNAS2/ND1 are reported for different Drosophilidae species. Non-canonical secondary structures were encountered for tRNAS1 and tRNAY, revealing patterns that apply at different phylogenetic scales. According to the best depiction of the mitogenomes evolutionary history, the three Neotropical species of the Zygothrica genus group encompass a monophyletic lineage sister to Zaprionus, composing with this genus a clade that is sister to the Drosophila subgenus.
期刊介绍:
Genetica publishes papers dealing with genetics, genomics, and evolution. Our journal covers novel advances in the fields of genomics, conservation genetics, genotype-phenotype interactions, evo-devo, population and quantitative genetics, and biodiversity. Genetica publishes original research articles addressing novel conceptual, experimental, and theoretical issues in these areas, whatever the taxon considered. Biomedical papers and papers on breeding animal and plant genetics are not within the scope of Genetica, unless framed in an evolutionary context. Recent advances in genetics, genomics and evolution are also published in thematic issues and synthesis papers published by experts in the field.