共线性数据的回归分析。

John Mandel
{"title":"共线性数据的回归分析。","authors":"John Mandel","doi":"10.6028/jres.090.043","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a technique based on the intuitively-simple concepts of Sample Domain and Effective Prediction Domain, for dealing with linear regression situations involving collinearity of any degree of severity. The Effective Prediction Domain (EPD) clarifies the concept of collinearity, and leads to conclusions that are quantitative and practically useful. The method allows for the presence of expansion terms among the regressors, and requires no changes when dealing with such situations.</p>","PeriodicalId":93321,"journal":{"name":"Journal of research of the National Bureau of Standards (1977)","volume":"90 6","pages":"465-476"},"PeriodicalIF":0.0000,"publicationDate":"1985-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687607/pdf/jres-90-465.pdf","citationCount":"29","resultStr":"{\"title\":\"The Regression Analysis of Collinear Data.\",\"authors\":\"John Mandel\",\"doi\":\"10.6028/jres.090.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a technique based on the intuitively-simple concepts of Sample Domain and Effective Prediction Domain, for dealing with linear regression situations involving collinearity of any degree of severity. The Effective Prediction Domain (EPD) clarifies the concept of collinearity, and leads to conclusions that are quantitative and practically useful. The method allows for the presence of expansion terms among the regressors, and requires no changes when dealing with such situations.</p>\",\"PeriodicalId\":93321,\"journal\":{\"name\":\"Journal of research of the National Bureau of Standards (1977)\",\"volume\":\"90 6\",\"pages\":\"465-476\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687607/pdf/jres-90-465.pdf\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of research of the National Bureau of Standards (1977)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.090.043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research of the National Bureau of Standards (1977)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.090.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了一种基于样本域和有效预测域的直观简单概念的技术,用于处理涉及任何严重程度共线性的线性回归情况。有效预测域(EPD)澄清了共线性的概念,并得出了定量和实用的结论。该方法允许回归量之间存在展开项,并且在处理这种情况时不需要更改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Regression Analysis of Collinear Data.

This paper presents a technique based on the intuitively-simple concepts of Sample Domain and Effective Prediction Domain, for dealing with linear regression situations involving collinearity of any degree of severity. The Effective Prediction Domain (EPD) clarifies the concept of collinearity, and leads to conclusions that are quantitative and practically useful. The method allows for the presence of expansion terms among the regressors, and requires no changes when dealing with such situations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信