稳定定律密度和线性松弛现象。

Menachem Dishon, George H Weiss, John T Bendler
{"title":"稳定定律密度和线性松弛现象。","authors":"Menachem Dishon,&nbsp;George H Weiss,&nbsp;John T Bendler","doi":"10.6028/jres.090.002","DOIUrl":null,"url":null,"abstract":"<p><p>Stable law distributions occur in the description of the linear dielectric behavior of polymers, the motion of carriers in semi-conductors, the statistical behavior of neurons, and many other phenomena. No accurate tables of these distributions or algorithms for estimating the parameters in these relaxation models exist. In this paper we present tables of the functions <dispformula> <math> <mrow><msub><mi>Q</mi> <mi>α</mi></msub> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>=</mo> <mfrac><mn>1</mn> <mi>π</mi></mfrac> <mrow><msubsup><mo>∫</mo> <mn>0</mn> <mi>∞</mi></msubsup> <mrow><msup><mi>e</mi> <mrow><mo>-</mo> <msup><mi>u</mi> <mi>α</mi></msup> </mrow> </msup> </mrow> </mrow> <mi>cos</mi> <mo>(</mo> <mi>z</mi> <mi>u</mi> <mo>)</mo> <mi>d</mi> <mi>u</mi></mrow> <mspace></mspace> <mrow><msub><mi>V</mi> <mi>α</mi></msub> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>=</mo> <mfrac><mn>1</mn> <mi>π</mi></mfrac> <mrow><msubsup><mo>∫</mo> <mn>0</mn> <mi>∞</mi></msubsup> <mrow><msup><mi>e</mi> <mrow><mo>-</mo> <msup><mi>u</mi> <mi>α</mi></msup> </mrow> </msup> </mrow> </mrow> <mi>sin</mi> <mo>(</mo> <mi>z</mi> <mi>u</mi> <mo>)</mo> <mi>d</mi> <mi>u</mi></mrow> </math> </dispformula> together with related functional properties of <i>zQ</i> <sub><i>α</i></sub> (<i>z</i>). These are useful in the estimation of the parameters in relaxation models for polymers and related materials. Values of the integral <i>Q</i> <sub><i>α</i></sub> (<i>z</i>) are given for <i>α</i> = 0.01,0.02(0.02)0.1(0.1)1.0(0.2)2.0 and those of <i>V</i> <sub><i>α</i></sub> (<i>z</i>) are given for <i>α</i> = 0.0(0.01)0.1(0.1)2.0. A variety of methods was used to obtain six place accuracy. The tables can be used to sequentially estimate the three parameters appearing in the Williams-Watts model of relaxation. An illustration of this method applied to data in the literature is given.</p>","PeriodicalId":93321,"journal":{"name":"Journal of research of the National Bureau of Standards (1977)","volume":"90 1","pages":"27-39"},"PeriodicalIF":0.0000,"publicationDate":"1985-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687585/pdf/jres-90-027.pdf","citationCount":"37","resultStr":"{\"title\":\"Stable Law Densities and Linear Relaxation Phenomena.\",\"authors\":\"Menachem Dishon,&nbsp;George H Weiss,&nbsp;John T Bendler\",\"doi\":\"10.6028/jres.090.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stable law distributions occur in the description of the linear dielectric behavior of polymers, the motion of carriers in semi-conductors, the statistical behavior of neurons, and many other phenomena. No accurate tables of these distributions or algorithms for estimating the parameters in these relaxation models exist. In this paper we present tables of the functions <dispformula> <math> <mrow><msub><mi>Q</mi> <mi>α</mi></msub> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>=</mo> <mfrac><mn>1</mn> <mi>π</mi></mfrac> <mrow><msubsup><mo>∫</mo> <mn>0</mn> <mi>∞</mi></msubsup> <mrow><msup><mi>e</mi> <mrow><mo>-</mo> <msup><mi>u</mi> <mi>α</mi></msup> </mrow> </msup> </mrow> </mrow> <mi>cos</mi> <mo>(</mo> <mi>z</mi> <mi>u</mi> <mo>)</mo> <mi>d</mi> <mi>u</mi></mrow> <mspace></mspace> <mrow><msub><mi>V</mi> <mi>α</mi></msub> <mo>(</mo> <mi>z</mi> <mo>)</mo> <mo>=</mo> <mfrac><mn>1</mn> <mi>π</mi></mfrac> <mrow><msubsup><mo>∫</mo> <mn>0</mn> <mi>∞</mi></msubsup> <mrow><msup><mi>e</mi> <mrow><mo>-</mo> <msup><mi>u</mi> <mi>α</mi></msup> </mrow> </msup> </mrow> </mrow> <mi>sin</mi> <mo>(</mo> <mi>z</mi> <mi>u</mi> <mo>)</mo> <mi>d</mi> <mi>u</mi></mrow> </math> </dispformula> together with related functional properties of <i>zQ</i> <sub><i>α</i></sub> (<i>z</i>). These are useful in the estimation of the parameters in relaxation models for polymers and related materials. Values of the integral <i>Q</i> <sub><i>α</i></sub> (<i>z</i>) are given for <i>α</i> = 0.01,0.02(0.02)0.1(0.1)1.0(0.2)2.0 and those of <i>V</i> <sub><i>α</i></sub> (<i>z</i>) are given for <i>α</i> = 0.0(0.01)0.1(0.1)2.0. A variety of methods was used to obtain six place accuracy. The tables can be used to sequentially estimate the three parameters appearing in the Williams-Watts model of relaxation. An illustration of this method applied to data in the literature is given.</p>\",\"PeriodicalId\":93321,\"journal\":{\"name\":\"Journal of research of the National Bureau of Standards (1977)\",\"volume\":\"90 1\",\"pages\":\"27-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687585/pdf/jres-90-027.pdf\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of research of the National Bureau of Standards (1977)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.090.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research of the National Bureau of Standards (1977)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.090.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

稳定定律分布出现在描述聚合物的线性介电行为、半导体中载流子的运动、神经元的统计行为和许多其他现象中。这些分布没有精确的表,也没有用于估计这些松弛模型参数的算法。本文给出了函数Q α (z) = 1 π∫0∞e - u α cos (z u) d u V α (z) = 1 π∫0∞e - u α sin (z u) d u以及函数zQ α (z)的相关泛函性质,这些性质对聚合物和相关材料弛豫模型参数的估计是有用的。在α = 0.01、0.02(0.02)0.1(0.1)1.0(0.2)2.0时给出了积分Q α (z)的取值,在α = 0.0(0.01)0.1(0.1)2.0时给出了积分V α (z)的取值。采用多种方法获得了六位精度。这些表可用于依次估计Williams-Watts松弛模型中出现的三个参数。文中给出了该方法在文献数据中的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable Law Densities and Linear Relaxation Phenomena.

Stable law distributions occur in the description of the linear dielectric behavior of polymers, the motion of carriers in semi-conductors, the statistical behavior of neurons, and many other phenomena. No accurate tables of these distributions or algorithms for estimating the parameters in these relaxation models exist. In this paper we present tables of the functions Q α ( z ) = 1 π 0 e - u α cos ( z u ) d u V α ( z ) = 1 π 0 e - u α sin ( z u ) d u together with related functional properties of zQ α (z). These are useful in the estimation of the parameters in relaxation models for polymers and related materials. Values of the integral Q α (z) are given for α = 0.01,0.02(0.02)0.1(0.1)1.0(0.2)2.0 and those of V α (z) are given for α = 0.0(0.01)0.1(0.1)2.0. A variety of methods was used to obtain six place accuracy. The tables can be used to sequentially estimate the three parameters appearing in the Williams-Watts model of relaxation. An illustration of this method applied to data in the literature is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信