Tetsuya Kobayashi, Takanori Azuma, Daisuke Yasokawa, Shogo Yamaki, Koji Yamazaki
{"title":"芽孢杆菌和拟芽孢杆菌的耐热性及其在冷藏温度下的生长能力。","authors":"Tetsuya Kobayashi, Takanori Azuma, Daisuke Yasokawa, Shogo Yamaki, Koji Yamazaki","doi":"10.4265/bio.26.147","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, spore heat resistance and growth ability at refrigeration temperatures of Bacillus spp. and Paenibacillus spp. were determined. The spore D<sub>90°C</sub> of 67.6% (23 of 34 strains) of Bacillus and 73.9% (17 of 23 strains) of Paenibacillus was less than 15 min. The growth abilities of both genera were equivalent at 10°C. However, 71.1% (32 of 45 strains) of Paenibacillus and only 6.3% (3 of 48 strains) of Bacillus cereus group could grow at 4°C. Eight B. cereus strains formed spores with higher heat resistance compared to the other Bacillus strains assessed; however, they did not grow at tempreratures below 10°C. Conversely, four Paenibacillus strains formed spores with heat resistance equivalent to that of the eight B. cereus strains and grew at 6°C or lower. In particular, Paenibacillus sp. JCM13343 formed the highest heat-resistant spores (D<sub>90°C</sub> = 136.1 min) and grew well at 4°C. These results indicate that Paenibacillus can grow in processed foods during refrigerated storage and has the potential to cause spoilage as well as Bacillus. Therefore, Paenibacillus should be considered as one of the targets for microbiological control in refrigerated processed foods.</p>","PeriodicalId":8777,"journal":{"name":"Biocontrol science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spore Heat Resistance and Growth Ability at Refrigeration Temperatures of Bacillus spp. and Paenibacillus spp.\",\"authors\":\"Tetsuya Kobayashi, Takanori Azuma, Daisuke Yasokawa, Shogo Yamaki, Koji Yamazaki\",\"doi\":\"10.4265/bio.26.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, spore heat resistance and growth ability at refrigeration temperatures of Bacillus spp. and Paenibacillus spp. were determined. The spore D<sub>90°C</sub> of 67.6% (23 of 34 strains) of Bacillus and 73.9% (17 of 23 strains) of Paenibacillus was less than 15 min. The growth abilities of both genera were equivalent at 10°C. However, 71.1% (32 of 45 strains) of Paenibacillus and only 6.3% (3 of 48 strains) of Bacillus cereus group could grow at 4°C. Eight B. cereus strains formed spores with higher heat resistance compared to the other Bacillus strains assessed; however, they did not grow at tempreratures below 10°C. Conversely, four Paenibacillus strains formed spores with heat resistance equivalent to that of the eight B. cereus strains and grew at 6°C or lower. In particular, Paenibacillus sp. JCM13343 formed the highest heat-resistant spores (D<sub>90°C</sub> = 136.1 min) and grew well at 4°C. These results indicate that Paenibacillus can grow in processed foods during refrigerated storage and has the potential to cause spoilage as well as Bacillus. Therefore, Paenibacillus should be considered as one of the targets for microbiological control in refrigerated processed foods.</p>\",\"PeriodicalId\":8777,\"journal\":{\"name\":\"Biocontrol science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocontrol science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4265/bio.26.147\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocontrol science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4265/bio.26.147","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Spore Heat Resistance and Growth Ability at Refrigeration Temperatures of Bacillus spp. and Paenibacillus spp.
In this study, spore heat resistance and growth ability at refrigeration temperatures of Bacillus spp. and Paenibacillus spp. were determined. The spore D90°C of 67.6% (23 of 34 strains) of Bacillus and 73.9% (17 of 23 strains) of Paenibacillus was less than 15 min. The growth abilities of both genera were equivalent at 10°C. However, 71.1% (32 of 45 strains) of Paenibacillus and only 6.3% (3 of 48 strains) of Bacillus cereus group could grow at 4°C. Eight B. cereus strains formed spores with higher heat resistance compared to the other Bacillus strains assessed; however, they did not grow at tempreratures below 10°C. Conversely, four Paenibacillus strains formed spores with heat resistance equivalent to that of the eight B. cereus strains and grew at 6°C or lower. In particular, Paenibacillus sp. JCM13343 formed the highest heat-resistant spores (D90°C = 136.1 min) and grew well at 4°C. These results indicate that Paenibacillus can grow in processed foods during refrigerated storage and has the potential to cause spoilage as well as Bacillus. Therefore, Paenibacillus should be considered as one of the targets for microbiological control in refrigerated processed foods.
期刊介绍:
The Biocontrol Science provides a medium for the publication of original articles, concise notes, and review articles on all aspects of science and technology of biocontrol.