Shaghayegh Hasanpour, Soheil Eagderi, Hadi Poorbagher, Mohammad Hasanpour
{"title":"在斑马鱼发育过程中,母体和合子激活素信号通过调控多能性基因促进中胚层的充分模式和分化。","authors":"Shaghayegh Hasanpour, Soheil Eagderi, Hadi Poorbagher, Mohammad Hasanpour","doi":"10.1387/ijdb.210073se","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the role of maternal Activin-like factors in the preservation of stemness and mesendoderm induction, their effects were promoted and inhibited using synthetic human Activin A or SB-505124 treatments, respectively, before the maternal to zygotic transition (MZT). To study the role of zygotic Activin-like factors, SB-505124 treatment was also used after the MZT. Promoting the signaling intensity of maternal Activin-like factors led to premature differentiation, loss of stemness, and no mesendoderm malformation, while its alleviation delayed the differentiation and caused various malformations. Inhibition of the zygotic Activin-like factors was associated with suppressing the <i>ndr1</i>, <i>ndr2</i>, <i>oct4</i> (<i>pou5f3</i>), <i>mycb</i> and <i>notail</i> transcription as well as differentiation retardation at the oblong stage, and a broad spectrum of anomalies in a dose-dependent manner. Together, promoting the signal intensity of maternal Activin-like factors drove development along with mesendodermal differentiation, while suppression of the maternal or zygotic ones maintained the pluripotent state and delayed differentiation.</p>","PeriodicalId":50329,"journal":{"name":"International Journal of Developmental Biology","volume":"65 10-11-12","pages":"513-522"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maternal and zygotic activin signaling promotes adequate pattern and differentiation of mesoderm through regulation of pluripotency genes during zebrafish development.\",\"authors\":\"Shaghayegh Hasanpour, Soheil Eagderi, Hadi Poorbagher, Mohammad Hasanpour\",\"doi\":\"10.1387/ijdb.210073se\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To investigate the role of maternal Activin-like factors in the preservation of stemness and mesendoderm induction, their effects were promoted and inhibited using synthetic human Activin A or SB-505124 treatments, respectively, before the maternal to zygotic transition (MZT). To study the role of zygotic Activin-like factors, SB-505124 treatment was also used after the MZT. Promoting the signaling intensity of maternal Activin-like factors led to premature differentiation, loss of stemness, and no mesendoderm malformation, while its alleviation delayed the differentiation and caused various malformations. Inhibition of the zygotic Activin-like factors was associated with suppressing the <i>ndr1</i>, <i>ndr2</i>, <i>oct4</i> (<i>pou5f3</i>), <i>mycb</i> and <i>notail</i> transcription as well as differentiation retardation at the oblong stage, and a broad spectrum of anomalies in a dose-dependent manner. Together, promoting the signal intensity of maternal Activin-like factors drove development along with mesendodermal differentiation, while suppression of the maternal or zygotic ones maintained the pluripotent state and delayed differentiation.</p>\",\"PeriodicalId\":50329,\"journal\":{\"name\":\"International Journal of Developmental Biology\",\"volume\":\"65 10-11-12\",\"pages\":\"513-522\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.210073se\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1387/ijdb.210073se","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Maternal and zygotic activin signaling promotes adequate pattern and differentiation of mesoderm through regulation of pluripotency genes during zebrafish development.
To investigate the role of maternal Activin-like factors in the preservation of stemness and mesendoderm induction, their effects were promoted and inhibited using synthetic human Activin A or SB-505124 treatments, respectively, before the maternal to zygotic transition (MZT). To study the role of zygotic Activin-like factors, SB-505124 treatment was also used after the MZT. Promoting the signaling intensity of maternal Activin-like factors led to premature differentiation, loss of stemness, and no mesendoderm malformation, while its alleviation delayed the differentiation and caused various malformations. Inhibition of the zygotic Activin-like factors was associated with suppressing the ndr1, ndr2, oct4 (pou5f3), mycb and notail transcription as well as differentiation retardation at the oblong stage, and a broad spectrum of anomalies in a dose-dependent manner. Together, promoting the signal intensity of maternal Activin-like factors drove development along with mesendodermal differentiation, while suppression of the maternal or zygotic ones maintained the pluripotent state and delayed differentiation.
期刊介绍:
The International Journal of Developmental Biology (ISSN: 0214-
6282) is an independent, not for profit scholarly journal, published by
scientists, for scientists. The journal publishes papers which throw
light on our understanding of animal and plant developmental mechanisms in health and disease and, in particular, research which elucidates the developmental principles underlying stem cell properties
and cancer. Technical, historical or theoretical approaches also fall
within the scope of the journal. Criteria for acceptance include scientific excellence, novelty and quality of presentation of data and illustrations. Advantages of publishing in the journal include: rapid
publication; free unlimited color reproduction; no page charges; free
publication of online supplementary material; free publication of audio
files (MP3 type); one-to-one personalized attention at all stages
during the editorial process. An easy online submission facility and an
open online access option, by means of which papers can be published without any access restrictions. In keeping with its mission, the
journal offers free online subscriptions to academic institutions in
developing countries.