P.H. DeJonckere , B. Millet , R. Van Gool , A. Martens , J. Lebacq
{"title":"在职业性NIHL病例中用于医学法律目的的客观频率特异性听力阈值定义:ASSR优于CERA","authors":"P.H. DeJonckere , B. Millet , R. Van Gool , A. Martens , J. Lebacq","doi":"10.1016/j.joto.2021.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Audiological use of the 40 Hz-ASSR (auditory steady state responses) could be valuable for objectively estimating the frequency-specific threshold in adults undergoing an expertise examination for medicolegal and/or compensation purposes. The present prospective study was set up to clarify the relationship between the thresholds obtained by cortical evoked response audiometry (CERA) and by 40 Hz-ASSR, in the same ears, within a large homogeneous sample of 164 subjects (328 ears) with NIHL and well documented exposure to noise. All these subjects claimed financial compensation for occupational NIHL, and there was a suspicion of exaggeration of the reported NIHLs. ASSR thresholds show a good correlation with the CERA thresholds. However, a systematic shift is noticed, ASSR thresholds being on average (1–2 – 3 kHz) 4.38 dB lower (i.e. showing less hearing loss) than CERA thresholds. Moreover, the binaural multiple ASSR technique allows a considerable time gain when compared to the CERA.</p></div>","PeriodicalId":37466,"journal":{"name":"Journal of Otology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.joto.2021.02.002","citationCount":"2","resultStr":"{\"title\":\"Objective frequency-specific hearing thresholds definition for medicolegal purposes in case of occupational NIHL: ASSR outperforms CERA\",\"authors\":\"P.H. DeJonckere , B. Millet , R. Van Gool , A. Martens , J. Lebacq\",\"doi\":\"10.1016/j.joto.2021.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Audiological use of the 40 Hz-ASSR (auditory steady state responses) could be valuable for objectively estimating the frequency-specific threshold in adults undergoing an expertise examination for medicolegal and/or compensation purposes. The present prospective study was set up to clarify the relationship between the thresholds obtained by cortical evoked response audiometry (CERA) and by 40 Hz-ASSR, in the same ears, within a large homogeneous sample of 164 subjects (328 ears) with NIHL and well documented exposure to noise. All these subjects claimed financial compensation for occupational NIHL, and there was a suspicion of exaggeration of the reported NIHLs. ASSR thresholds show a good correlation with the CERA thresholds. However, a systematic shift is noticed, ASSR thresholds being on average (1–2 – 3 kHz) 4.38 dB lower (i.e. showing less hearing loss) than CERA thresholds. Moreover, the binaural multiple ASSR technique allows a considerable time gain when compared to the CERA.</p></div>\",\"PeriodicalId\":37466,\"journal\":{\"name\":\"Journal of Otology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.joto.2021.02.002\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Otology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672293021000076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OTORHINOLARYNGOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Otology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672293021000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
Objective frequency-specific hearing thresholds definition for medicolegal purposes in case of occupational NIHL: ASSR outperforms CERA
Audiological use of the 40 Hz-ASSR (auditory steady state responses) could be valuable for objectively estimating the frequency-specific threshold in adults undergoing an expertise examination for medicolegal and/or compensation purposes. The present prospective study was set up to clarify the relationship between the thresholds obtained by cortical evoked response audiometry (CERA) and by 40 Hz-ASSR, in the same ears, within a large homogeneous sample of 164 subjects (328 ears) with NIHL and well documented exposure to noise. All these subjects claimed financial compensation for occupational NIHL, and there was a suspicion of exaggeration of the reported NIHLs. ASSR thresholds show a good correlation with the CERA thresholds. However, a systematic shift is noticed, ASSR thresholds being on average (1–2 – 3 kHz) 4.38 dB lower (i.e. showing less hearing loss) than CERA thresholds. Moreover, the binaural multiple ASSR technique allows a considerable time gain when compared to the CERA.
期刊介绍:
Journal of Otology is an open access, peer-reviewed journal that publishes research findings from disciplines related to both clinical and basic science aspects of auditory and vestibular system and diseases of the ear. This journal welcomes submissions describing original experimental research that may improve our understanding of the mechanisms underlying problems of basic or clinical significance and treatment of patients with disorders of the auditory and vestibular systems. In addition to original papers the journal also offers invited review articles on current topics written by leading experts in the field. The journal is of primary importance for all scientists and practitioners interested in audiology, otology and neurotology, auditory neurosciences and related disciplines. Journal of Otology welcomes contributions from scholars in all countries and regions across the world.