Omar Sharif, Md Rafiqul Islam, Md Zobaer Hasan, Muhammad Ashad Kabir, Md Emran Hasan, Salman A AlQahtani, Guandong Xu
{"title":"人口统计变量对COVID-19传播和预测的影响分析","authors":"Omar Sharif, Md Rafiqul Islam, Md Zobaer Hasan, Muhammad Ashad Kabir, Md Emran Hasan, Salman A AlQahtani, Guandong Xu","doi":"10.1007/s41666-021-00105-8","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study is to analyse the coronavirus disease 2019 (COVID-19) outbreak in Bangladesh. This study investigates the impact of demographic variables on the spread of COVID-19 as well as tries to forecast the COVID-19 infected numbers. First of all, this study uses Fisher's Exact test to investigate the association between the infected groups of COVID-19 and demographical variables. Second, it exploits the ANOVA test to examine significant difference in the mean infected number of COVID-19 cases across the population density, literacy rate, and regions/divisions in Bangladesh. Third, this research predicts the number of infected cases in the epidemic peak region of Bangladesh for the year 2021. As a result, from the Fisher's Exact test, we find a very strong significant association between the population density groups and infected groups of COVID-19. And, from the ANOVA test, we observe a significant difference in the mean infected number of COVID-19 cases across the five different population density groups. Besides, the prediction model shows that the cumulative number of infected cases would be raised to around 500,000 in the most densely region of Bangladesh, Dhaka division.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":" ","pages":"72-90"},"PeriodicalIF":5.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444526/pdf/","citationCount":"3","resultStr":"{\"title\":\"Analyzing the Impact of Demographic Variables on Spreading and Forecasting COVID-19.\",\"authors\":\"Omar Sharif, Md Rafiqul Islam, Md Zobaer Hasan, Muhammad Ashad Kabir, Md Emran Hasan, Salman A AlQahtani, Guandong Xu\",\"doi\":\"10.1007/s41666-021-00105-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study is to analyse the coronavirus disease 2019 (COVID-19) outbreak in Bangladesh. This study investigates the impact of demographic variables on the spread of COVID-19 as well as tries to forecast the COVID-19 infected numbers. First of all, this study uses Fisher's Exact test to investigate the association between the infected groups of COVID-19 and demographical variables. Second, it exploits the ANOVA test to examine significant difference in the mean infected number of COVID-19 cases across the population density, literacy rate, and regions/divisions in Bangladesh. Third, this research predicts the number of infected cases in the epidemic peak region of Bangladesh for the year 2021. As a result, from the Fisher's Exact test, we find a very strong significant association between the population density groups and infected groups of COVID-19. And, from the ANOVA test, we observe a significant difference in the mean infected number of COVID-19 cases across the five different population density groups. Besides, the prediction model shows that the cumulative number of infected cases would be raised to around 500,000 in the most densely region of Bangladesh, Dhaka division.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":\" \",\"pages\":\"72-90\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444526/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-021-00105-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-021-00105-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Analyzing the Impact of Demographic Variables on Spreading and Forecasting COVID-19.
The aim of this study is to analyse the coronavirus disease 2019 (COVID-19) outbreak in Bangladesh. This study investigates the impact of demographic variables on the spread of COVID-19 as well as tries to forecast the COVID-19 infected numbers. First of all, this study uses Fisher's Exact test to investigate the association between the infected groups of COVID-19 and demographical variables. Second, it exploits the ANOVA test to examine significant difference in the mean infected number of COVID-19 cases across the population density, literacy rate, and regions/divisions in Bangladesh. Third, this research predicts the number of infected cases in the epidemic peak region of Bangladesh for the year 2021. As a result, from the Fisher's Exact test, we find a very strong significant association between the population density groups and infected groups of COVID-19. And, from the ANOVA test, we observe a significant difference in the mean infected number of COVID-19 cases across the five different population density groups. Besides, the prediction model shows that the cumulative number of infected cases would be raised to around 500,000 in the most densely region of Bangladesh, Dhaka division.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis