{"title":"关于电休克治疗对人类海马的影响,我们能说些什么?","authors":"Akihiro Takamiya, Taishiro Kishimoto, Masaru Mimura","doi":"10.1177/15500594211044066","DOIUrl":null,"url":null,"abstract":"<p><p>Electroconvulsive therapy (ECT) is the most effective antidepressant treatment, although its mechanisms of action remain unclear. Since 2010, several structural magnetic resonance imaging studies based on a neuroplastic hypothesis have consistently reported increases in the hippocampal volume following ECT. Moreover, volume increases in the human dentate gyrus, where neurogenesis occurs, have also been reported. These results are in line with the preclinical findings of ECT-induced neuroplastic changes, including neurogenesis, gliogenesis, synaptogenesis, and angiogenesis, in rodents and nonhuman primates. Despite this robust evidence of an effect of ECT on hippocampal plasticity, the clinical relevance of these human hippocampal changes continues to be questioned. This narrative review summarizes recent findings regarding ECT-induced hippocampal volume changes. Furthermore, this review also discusses methodological considerations and future directions in this field.</p>","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":" ","pages":"584-593"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"What Can We Tell About the Effect of Electroconvulsive Therapy on the Human Hippocampus?\",\"authors\":\"Akihiro Takamiya, Taishiro Kishimoto, Masaru Mimura\",\"doi\":\"10.1177/15500594211044066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroconvulsive therapy (ECT) is the most effective antidepressant treatment, although its mechanisms of action remain unclear. Since 2010, several structural magnetic resonance imaging studies based on a neuroplastic hypothesis have consistently reported increases in the hippocampal volume following ECT. Moreover, volume increases in the human dentate gyrus, where neurogenesis occurs, have also been reported. These results are in line with the preclinical findings of ECT-induced neuroplastic changes, including neurogenesis, gliogenesis, synaptogenesis, and angiogenesis, in rodents and nonhuman primates. Despite this robust evidence of an effect of ECT on hippocampal plasticity, the clinical relevance of these human hippocampal changes continues to be questioned. This narrative review summarizes recent findings regarding ECT-induced hippocampal volume changes. Furthermore, this review also discusses methodological considerations and future directions in this field.</p>\",\"PeriodicalId\":10682,\"journal\":{\"name\":\"Clinical EEG and Neuroscience\",\"volume\":\" \",\"pages\":\"584-593\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594211044066\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594211044066","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
What Can We Tell About the Effect of Electroconvulsive Therapy on the Human Hippocampus?
Electroconvulsive therapy (ECT) is the most effective antidepressant treatment, although its mechanisms of action remain unclear. Since 2010, several structural magnetic resonance imaging studies based on a neuroplastic hypothesis have consistently reported increases in the hippocampal volume following ECT. Moreover, volume increases in the human dentate gyrus, where neurogenesis occurs, have also been reported. These results are in line with the preclinical findings of ECT-induced neuroplastic changes, including neurogenesis, gliogenesis, synaptogenesis, and angiogenesis, in rodents and nonhuman primates. Despite this robust evidence of an effect of ECT on hippocampal plasticity, the clinical relevance of these human hippocampal changes continues to be questioned. This narrative review summarizes recent findings regarding ECT-induced hippocampal volume changes. Furthermore, this review also discusses methodological considerations and future directions in this field.
期刊介绍:
Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.