Margaret Warner, Xiaotang Fan, Anders Strom, Wanfu Wu, Jan-Åke Gustafsson
{"title":"25年的ERβ:一个人的旅程。","authors":"Margaret Warner, Xiaotang Fan, Anders Strom, Wanfu Wu, Jan-Åke Gustafsson","doi":"10.1530/JME-21-0121","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>After the discovery of ERβ, a novel role for dihydrotestosterone (DHT) in estrogen signaling was revealed. Instead of just being a better androgen, DHT was found to be a precursor of the ERβ agonist 5α-androstane-3β, 17β-diol (3βAdiol), an estrogen which does not require aromatase for its synthesis. ERβ was found to oppose androgen signaling and thus is a potential target for treatment of prostate cancer. ERβ was also found to have effects that were independent of androgen signaling, particularly in the CNS. Although in rodent models of neurodegenerative diseases (Parkinson's disease, multiple sclerosis, and Alzheimer's disease), ERβ agonists are very effective in relieving symptoms and improving pathologies, this has not proven to be the case in humans. In this review we will focus on the main differences in ERβ signaling between rodents and humans and will make the point that a very important difference between the two species is in the splice variants which are expressed in humans and not rodents. The main conclusion at this point is that before we think of using ERβ agonists clinically, much more work on ERβ signaling in the human or in primates needs to be done.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"68 1","pages":"R1-R9"},"PeriodicalIF":3.6000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"25 years of ERβ: a personal journey.\",\"authors\":\"Margaret Warner, Xiaotang Fan, Anders Strom, Wanfu Wu, Jan-Åke Gustafsson\",\"doi\":\"10.1530/JME-21-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>After the discovery of ERβ, a novel role for dihydrotestosterone (DHT) in estrogen signaling was revealed. Instead of just being a better androgen, DHT was found to be a precursor of the ERβ agonist 5α-androstane-3β, 17β-diol (3βAdiol), an estrogen which does not require aromatase for its synthesis. ERβ was found to oppose androgen signaling and thus is a potential target for treatment of prostate cancer. ERβ was also found to have effects that were independent of androgen signaling, particularly in the CNS. Although in rodent models of neurodegenerative diseases (Parkinson's disease, multiple sclerosis, and Alzheimer's disease), ERβ agonists are very effective in relieving symptoms and improving pathologies, this has not proven to be the case in humans. In this review we will focus on the main differences in ERβ signaling between rodents and humans and will make the point that a very important difference between the two species is in the splice variants which are expressed in humans and not rodents. The main conclusion at this point is that before we think of using ERβ agonists clinically, much more work on ERβ signaling in the human or in primates needs to be done.</p>\",\"PeriodicalId\":16570,\"journal\":{\"name\":\"Journal of molecular endocrinology\",\"volume\":\"68 1\",\"pages\":\"R1-R9\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JME-21-0121\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-21-0121","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Summary: After the discovery of ERβ, a novel role for dihydrotestosterone (DHT) in estrogen signaling was revealed. Instead of just being a better androgen, DHT was found to be a precursor of the ERβ agonist 5α-androstane-3β, 17β-diol (3βAdiol), an estrogen which does not require aromatase for its synthesis. ERβ was found to oppose androgen signaling and thus is a potential target for treatment of prostate cancer. ERβ was also found to have effects that were independent of androgen signaling, particularly in the CNS. Although in rodent models of neurodegenerative diseases (Parkinson's disease, multiple sclerosis, and Alzheimer's disease), ERβ agonists are very effective in relieving symptoms and improving pathologies, this has not proven to be the case in humans. In this review we will focus on the main differences in ERβ signaling between rodents and humans and will make the point that a very important difference between the two species is in the splice variants which are expressed in humans and not rodents. The main conclusion at this point is that before we think of using ERβ agonists clinically, much more work on ERβ signaling in the human or in primates needs to be done.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.