{"title":"被SARS-CoV-2污染的废水的流行、环境命运、处理策略和未来挑战","authors":"Saleha Kuzniewski","doi":"10.1002/rem.21691","DOIUrl":null,"url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in untreated and treated wastewater and studies have shown that the concentration of SARS-CoV-2 is proportional to the prevalence of the coronavirus disease 2019 (COVID-19) in communities. This article presents a literature review of the prevalence of SARS-CoV-2 in wastewater, its environmental fate, recommended treatment strategies for contaminated wastewater, and treatment challenges to be faced in the future. The environmental fate of SARS-CoV-2 in wastewater is not straightforward because it can be a source of infection when present in the treated wastewater depending on the permeability of the wastewater treatment plant containment area, and can also leach into aquifers, which may serve as drinking water supplies. Secondly, there are different practices that can mitigate the SARS-CoV-2 infection rate from infected feces and urine. The World Health Organization has recommended the use of ultraviolet radiation (UV), disinfection, and filtration for wastewater contaminated with SARS-CoV-2, processes also common in wastewater treatment facilities. This article discusses these strategies referencing studies performed with surrogate viruses and shows that SARS-CoV-2 treatment can be complicated due to the interference from other aqueous chemical and physical factors. Considering that COVID-19 is not the first and certainly not the last pandemic, it is imperative to develop an effective multitreatment strategy for wastewater contaminated with contagious viruses and, preferably, those that are compatible with current wastewater treatment methods.</p>","PeriodicalId":46411,"journal":{"name":"Remediation-The Journal of Environmental Cleanup Costs Technologies & Techniques","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441782/pdf/REM-31-97.pdf","citationCount":"0","resultStr":"{\"title\":\"Prevalence, environmental fate, treatment strategies, and future challenges for wastewater contaminated with SARS-CoV-2.\",\"authors\":\"Saleha Kuzniewski\",\"doi\":\"10.1002/rem.21691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in untreated and treated wastewater and studies have shown that the concentration of SARS-CoV-2 is proportional to the prevalence of the coronavirus disease 2019 (COVID-19) in communities. This article presents a literature review of the prevalence of SARS-CoV-2 in wastewater, its environmental fate, recommended treatment strategies for contaminated wastewater, and treatment challenges to be faced in the future. The environmental fate of SARS-CoV-2 in wastewater is not straightforward because it can be a source of infection when present in the treated wastewater depending on the permeability of the wastewater treatment plant containment area, and can also leach into aquifers, which may serve as drinking water supplies. Secondly, there are different practices that can mitigate the SARS-CoV-2 infection rate from infected feces and urine. The World Health Organization has recommended the use of ultraviolet radiation (UV), disinfection, and filtration for wastewater contaminated with SARS-CoV-2, processes also common in wastewater treatment facilities. This article discusses these strategies referencing studies performed with surrogate viruses and shows that SARS-CoV-2 treatment can be complicated due to the interference from other aqueous chemical and physical factors. Considering that COVID-19 is not the first and certainly not the last pandemic, it is imperative to develop an effective multitreatment strategy for wastewater contaminated with contagious viruses and, preferably, those that are compatible with current wastewater treatment methods.</p>\",\"PeriodicalId\":46411,\"journal\":{\"name\":\"Remediation-The Journal of Environmental Cleanup Costs Technologies & Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441782/pdf/REM-31-97.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remediation-The Journal of Environmental Cleanup Costs Technologies & Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/rem.21691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remediation-The Journal of Environmental Cleanup Costs Technologies & Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rem.21691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Prevalence, environmental fate, treatment strategies, and future challenges for wastewater contaminated with SARS-CoV-2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in untreated and treated wastewater and studies have shown that the concentration of SARS-CoV-2 is proportional to the prevalence of the coronavirus disease 2019 (COVID-19) in communities. This article presents a literature review of the prevalence of SARS-CoV-2 in wastewater, its environmental fate, recommended treatment strategies for contaminated wastewater, and treatment challenges to be faced in the future. The environmental fate of SARS-CoV-2 in wastewater is not straightforward because it can be a source of infection when present in the treated wastewater depending on the permeability of the wastewater treatment plant containment area, and can also leach into aquifers, which may serve as drinking water supplies. Secondly, there are different practices that can mitigate the SARS-CoV-2 infection rate from infected feces and urine. The World Health Organization has recommended the use of ultraviolet radiation (UV), disinfection, and filtration for wastewater contaminated with SARS-CoV-2, processes also common in wastewater treatment facilities. This article discusses these strategies referencing studies performed with surrogate viruses and shows that SARS-CoV-2 treatment can be complicated due to the interference from other aqueous chemical and physical factors. Considering that COVID-19 is not the first and certainly not the last pandemic, it is imperative to develop an effective multitreatment strategy for wastewater contaminated with contagious viruses and, preferably, those that are compatible with current wastewater treatment methods.