Jessica A Bernard, Hannah K Ballard, Trevor Bryan Jackson
{"title":"成年期小脑齿状体连通性:一项大型静息状态功能连通性调查。","authors":"Jessica A Bernard, Hannah K Ballard, Trevor Bryan Jackson","doi":"10.1093/texcom/tgab050","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebellar contributions to behavior in advanced age are of interest and importance, given its role in motor and cognitive performance. There are differences and declines in cerebellar structure in advanced age and cerebellar resting state connectivity is lower. However, the work on this area to date has focused on the cerebellar cortex. The deep cerebellar nuclei provide the primary cerebellar inputs and outputs to the cortex, as well as the spinal and vestibular systems. Dentate networks can be dissociated such that the dorsal region is associated with the motor cortex, whereas the ventral aspect is associated with the prefrontal cortex. However, whether dentato-thalamo-cortical networks differ across adulthood remains unknown. Here, using a large adult sample (<i>n</i> = 590) from the Cambridge Center for Ageing and Neuroscience, we investigated dentate connectivity across adulthood. We replicated past work showing dissociable resting state networks in the dorsal and ventral aspects of the dentate. In both seeds, we demonstrated that connectivity is lower with advanced age, indicating that connectivity differences extend beyond the cerebellar cortex. Finally, we demonstrated sex differences in dentate connectivity. This expands our understanding of cerebellar circuitry in advanced age and underscores the potential importance of this structure in age-related performance differences.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"2 3","pages":"tgab050"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436571/pdf/","citationCount":"7","resultStr":"{\"title\":\"Cerebellar Dentate Connectivity across Adulthood: A Large-Scale Resting State Functional Connectivity Investigation.\",\"authors\":\"Jessica A Bernard, Hannah K Ballard, Trevor Bryan Jackson\",\"doi\":\"10.1093/texcom/tgab050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebellar contributions to behavior in advanced age are of interest and importance, given its role in motor and cognitive performance. There are differences and declines in cerebellar structure in advanced age and cerebellar resting state connectivity is lower. However, the work on this area to date has focused on the cerebellar cortex. The deep cerebellar nuclei provide the primary cerebellar inputs and outputs to the cortex, as well as the spinal and vestibular systems. Dentate networks can be dissociated such that the dorsal region is associated with the motor cortex, whereas the ventral aspect is associated with the prefrontal cortex. However, whether dentato-thalamo-cortical networks differ across adulthood remains unknown. Here, using a large adult sample (<i>n</i> = 590) from the Cambridge Center for Ageing and Neuroscience, we investigated dentate connectivity across adulthood. We replicated past work showing dissociable resting state networks in the dorsal and ventral aspects of the dentate. In both seeds, we demonstrated that connectivity is lower with advanced age, indicating that connectivity differences extend beyond the cerebellar cortex. Finally, we demonstrated sex differences in dentate connectivity. This expands our understanding of cerebellar circuitry in advanced age and underscores the potential importance of this structure in age-related performance differences.</p>\",\"PeriodicalId\":72551,\"journal\":{\"name\":\"Cerebral cortex communications\",\"volume\":\"2 3\",\"pages\":\"tgab050\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436571/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/texcom/tgab050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/texcom/tgab050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Cerebellar Dentate Connectivity across Adulthood: A Large-Scale Resting State Functional Connectivity Investigation.
Cerebellar contributions to behavior in advanced age are of interest and importance, given its role in motor and cognitive performance. There are differences and declines in cerebellar structure in advanced age and cerebellar resting state connectivity is lower. However, the work on this area to date has focused on the cerebellar cortex. The deep cerebellar nuclei provide the primary cerebellar inputs and outputs to the cortex, as well as the spinal and vestibular systems. Dentate networks can be dissociated such that the dorsal region is associated with the motor cortex, whereas the ventral aspect is associated with the prefrontal cortex. However, whether dentato-thalamo-cortical networks differ across adulthood remains unknown. Here, using a large adult sample (n = 590) from the Cambridge Center for Ageing and Neuroscience, we investigated dentate connectivity across adulthood. We replicated past work showing dissociable resting state networks in the dorsal and ventral aspects of the dentate. In both seeds, we demonstrated that connectivity is lower with advanced age, indicating that connectivity differences extend beyond the cerebellar cortex. Finally, we demonstrated sex differences in dentate connectivity. This expands our understanding of cerebellar circuitry in advanced age and underscores the potential importance of this structure in age-related performance differences.