Violeta Muñoz-Fuentes, Hamed Haselimashhadi, Luis Santos, Henrik Westerberg, Helen Parkinson, Jeremy Mason
{"title":"多效性数据资源作为调查共病/多病及其在疾病中的作用的引物。","authors":"Violeta Muñoz-Fuentes, Hamed Haselimashhadi, Luis Santos, Henrik Westerberg, Helen Parkinson, Jeremy Mason","doi":"10.1007/s00335-021-09917-w","DOIUrl":null,"url":null,"abstract":"<p><p>Most current biomedical and protein research focuses only on a small proportion of genes, which results in a lost opportunity to identify new gene-disease associations and explore new opportunities for therapeutic intervention. The International Mouse Phenotyping Consortium (IMPC) focuses on elucidating gene function at scale for poorly characterized and/or under-studied genes. A key component of the IMPC initiative is the implementation of a broad phenotyping pipeline, which is facilitating the discovery of pleiotropy. Characterizing pleiotropy is essential to identify gene-disease associations, and it is of particular importance when elucidating the genetic causes of syndromic disorders. Here we show how the IMPC is effectively uncovering pleiotropy and how the new mouse models and gene function hypotheses generated by the IMPC are increasing our understanding of the mammalian genome, forming the basis of new research and identifying new gene-disease associations.</p>","PeriodicalId":412165,"journal":{"name":"Mammalian genome : official journal of the International Mammalian Genome Society","volume":" ","pages":"135-142"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913486/pdf/","citationCount":"2","resultStr":"{\"title\":\"Pleiotropy data resource as a primer for investigating co-morbidities/multi-morbidities and their role in disease.\",\"authors\":\"Violeta Muñoz-Fuentes, Hamed Haselimashhadi, Luis Santos, Henrik Westerberg, Helen Parkinson, Jeremy Mason\",\"doi\":\"10.1007/s00335-021-09917-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most current biomedical and protein research focuses only on a small proportion of genes, which results in a lost opportunity to identify new gene-disease associations and explore new opportunities for therapeutic intervention. The International Mouse Phenotyping Consortium (IMPC) focuses on elucidating gene function at scale for poorly characterized and/or under-studied genes. A key component of the IMPC initiative is the implementation of a broad phenotyping pipeline, which is facilitating the discovery of pleiotropy. Characterizing pleiotropy is essential to identify gene-disease associations, and it is of particular importance when elucidating the genetic causes of syndromic disorders. Here we show how the IMPC is effectively uncovering pleiotropy and how the new mouse models and gene function hypotheses generated by the IMPC are increasing our understanding of the mammalian genome, forming the basis of new research and identifying new gene-disease associations.</p>\",\"PeriodicalId\":412165,\"journal\":{\"name\":\"Mammalian genome : official journal of the International Mammalian Genome Society\",\"volume\":\" \",\"pages\":\"135-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913486/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian genome : official journal of the International Mammalian Genome Society\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-021-09917-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian genome : official journal of the International Mammalian Genome Society","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-021-09917-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Pleiotropy data resource as a primer for investigating co-morbidities/multi-morbidities and their role in disease.
Most current biomedical and protein research focuses only on a small proportion of genes, which results in a lost opportunity to identify new gene-disease associations and explore new opportunities for therapeutic intervention. The International Mouse Phenotyping Consortium (IMPC) focuses on elucidating gene function at scale for poorly characterized and/or under-studied genes. A key component of the IMPC initiative is the implementation of a broad phenotyping pipeline, which is facilitating the discovery of pleiotropy. Characterizing pleiotropy is essential to identify gene-disease associations, and it is of particular importance when elucidating the genetic causes of syndromic disorders. Here we show how the IMPC is effectively uncovering pleiotropy and how the new mouse models and gene function hypotheses generated by the IMPC are increasing our understanding of the mammalian genome, forming the basis of new research and identifying new gene-disease associations.