通过换位快速加速置换检验。

Moo K Chung, Linhui Xie, Shih-Gu Huang, Yixian Wang, Jingwen Yan, Li Shen
{"title":"通过换位快速加速置换检验。","authors":"Moo K Chung,&nbsp;Linhui Xie,&nbsp;Shih-Gu Huang,&nbsp;Yixian Wang,&nbsp;Jingwen Yan,&nbsp;Li Shen","doi":"10.1007/978-3-030-32391-2_5","DOIUrl":null,"url":null,"abstract":"<p><p>The permutation test is an often used test procedure for determining statistical significance in brain network studies. Unfortunately, generating every possible permutation for large-scale brain imaging datasets such as HCP and ADNI with hundreds of subjects is not practical. Many previous attempts at speeding up the permutation test rely on various approximation strategies such as estimating the tail distribution with known parametric distributions. In this study, we propose the novel transposition test that exploits the underlying algebraic structure of the permutation group. The method is applied to a large number of diffusion tensor images in localizing the regions of the brain network differences.</p>","PeriodicalId":93089,"journal":{"name":"Connectomics in neuroImaging : third International Workshop, CNI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings. CNI (Workshop) (3rd : 2019 : Shenzhen Shi, China)","volume":"11848 ","pages":"42-53"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428155/pdf/nihms-1735525.pdf","citationCount":"24","resultStr":"{\"title\":\"Rapid Acceleration of the Permutation Test via Transpositions.\",\"authors\":\"Moo K Chung,&nbsp;Linhui Xie,&nbsp;Shih-Gu Huang,&nbsp;Yixian Wang,&nbsp;Jingwen Yan,&nbsp;Li Shen\",\"doi\":\"10.1007/978-3-030-32391-2_5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The permutation test is an often used test procedure for determining statistical significance in brain network studies. Unfortunately, generating every possible permutation for large-scale brain imaging datasets such as HCP and ADNI with hundreds of subjects is not practical. Many previous attempts at speeding up the permutation test rely on various approximation strategies such as estimating the tail distribution with known parametric distributions. In this study, we propose the novel transposition test that exploits the underlying algebraic structure of the permutation group. The method is applied to a large number of diffusion tensor images in localizing the regions of the brain network differences.</p>\",\"PeriodicalId\":93089,\"journal\":{\"name\":\"Connectomics in neuroImaging : third International Workshop, CNI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings. CNI (Workshop) (3rd : 2019 : Shenzhen Shi, China)\",\"volume\":\"11848 \",\"pages\":\"42-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428155/pdf/nihms-1735525.pdf\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connectomics in neuroImaging : third International Workshop, CNI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings. CNI (Workshop) (3rd : 2019 : Shenzhen Shi, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-32391-2_5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connectomics in neuroImaging : third International Workshop, CNI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings. CNI (Workshop) (3rd : 2019 : Shenzhen Shi, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-32391-2_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

排列检验是确定脑网络研究中统计显著性的常用检验方法。不幸的是,为大规模脑成像数据集(如HCP和ADNI)生成所有可能的排列是不现实的。许多先前的加速置换检验的尝试依赖于各种近似策略,例如用已知的参数分布估计尾部分布。在这项研究中,我们提出了利用置换群的潜在代数结构的新的置换检验。将该方法应用于大量弥散张量图像中,用于脑网络差异区域的定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid Acceleration of the Permutation Test via Transpositions.

The permutation test is an often used test procedure for determining statistical significance in brain network studies. Unfortunately, generating every possible permutation for large-scale brain imaging datasets such as HCP and ADNI with hundreds of subjects is not practical. Many previous attempts at speeding up the permutation test rely on various approximation strategies such as estimating the tail distribution with known parametric distributions. In this study, we propose the novel transposition test that exploits the underlying algebraic structure of the permutation group. The method is applied to a large number of diffusion tensor images in localizing the regions of the brain network differences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信