{"title":"催产素:比分娩和分泌乳汁更重要。","authors":"Morley D Hollenberg","doi":"10.1042/CS20210180","DOIUrl":null,"url":null,"abstract":"<p><p>This commentary deals with the new observations that dendritic cell (DC) oxytocin receptors play a role in the inflammatory response generated in murine animal models of colitis. The overview provides a context of the discovery of oxytocin (OT), its chemical synthesis and the cell biology of its neurohypophysial synthesis and secretion. This perspective provides insight and raises questions to be answered related to the impact of OT in the gastrointestinal tract and to further the exploration of OT as a potentially locally synthesised regulator of intestinal inflammatory pathophysiology.</p>","PeriodicalId":519494,"journal":{"name":"Clinical Science (London, England : 1979)","volume":" ","pages":"2121-2126"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxytocin: much more than childbirth and milk letdown.\",\"authors\":\"Morley D Hollenberg\",\"doi\":\"10.1042/CS20210180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This commentary deals with the new observations that dendritic cell (DC) oxytocin receptors play a role in the inflammatory response generated in murine animal models of colitis. The overview provides a context of the discovery of oxytocin (OT), its chemical synthesis and the cell biology of its neurohypophysial synthesis and secretion. This perspective provides insight and raises questions to be answered related to the impact of OT in the gastrointestinal tract and to further the exploration of OT as a potentially locally synthesised regulator of intestinal inflammatory pathophysiology.</p>\",\"PeriodicalId\":519494,\"journal\":{\"name\":\"Clinical Science (London, England : 1979)\",\"volume\":\" \",\"pages\":\"2121-2126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Science (London, England : 1979)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1042/CS20210180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Science (London, England : 1979)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20210180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oxytocin: much more than childbirth and milk letdown.
This commentary deals with the new observations that dendritic cell (DC) oxytocin receptors play a role in the inflammatory response generated in murine animal models of colitis. The overview provides a context of the discovery of oxytocin (OT), its chemical synthesis and the cell biology of its neurohypophysial synthesis and secretion. This perspective provides insight and raises questions to be answered related to the impact of OT in the gastrointestinal tract and to further the exploration of OT as a potentially locally synthesised regulator of intestinal inflammatory pathophysiology.