负反馈细胞周期种群模型中稳定多簇周期解的通用性。

IF 1.8 4区 数学 Q3 ECOLOGY
Kiattisak Prathom, Todd R Young
{"title":"负反馈细胞周期种群模型中稳定多簇周期解的通用性。","authors":"Kiattisak Prathom,&nbsp;Todd R Young","doi":"10.1080/17513758.2021.1971781","DOIUrl":null,"url":null,"abstract":"<p><p>We study a population model where cells in one part of the cell cycle may affect the progress of cells in another part. If the influence, or feedback, from one part to another is negative, simulations of the model almost always result in multiple temporal clusters formed by groups of cells. We study regions in parameter space where periodic '<i>k</i>-cyclic' solutions are stable. The regions of stability coincide with sub-triangles on which certain events occur in a fixed order. For boundary sub-triangles with order '<math><mrow><mi>r</mi><mi>s</mi><mn>1</mn></mrow></math>', we prove that the <i>k</i>-cyclic periodic solution is asymptotically stable if the index of the sub-triangle is relatively prime with respect to the number of clusters <i>k</i> and neutrally stable otherwise. For negative linear feedback, we prove that the interior of the parameter set is covered by stable sub-triangles, i.e. a stable <i>k</i>-cyclic solution always exists for some <i>k</i>. We observe numerically that the result also holds for many forms of nonlinear feedback, but may break down in extreme cases.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"15 1","pages":"455-522"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universality of stable multi-cluster periodic solutions in a population model of the cell cycle with negative feedback.\",\"authors\":\"Kiattisak Prathom,&nbsp;Todd R Young\",\"doi\":\"10.1080/17513758.2021.1971781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study a population model where cells in one part of the cell cycle may affect the progress of cells in another part. If the influence, or feedback, from one part to another is negative, simulations of the model almost always result in multiple temporal clusters formed by groups of cells. We study regions in parameter space where periodic '<i>k</i>-cyclic' solutions are stable. The regions of stability coincide with sub-triangles on which certain events occur in a fixed order. For boundary sub-triangles with order '<math><mrow><mi>r</mi><mi>s</mi><mn>1</mn></mrow></math>', we prove that the <i>k</i>-cyclic periodic solution is asymptotically stable if the index of the sub-triangle is relatively prime with respect to the number of clusters <i>k</i> and neutrally stable otherwise. For negative linear feedback, we prove that the interior of the parameter set is covered by stable sub-triangles, i.e. a stable <i>k</i>-cyclic solution always exists for some <i>k</i>. We observe numerically that the result also holds for many forms of nonlinear feedback, but may break down in extreme cases.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"15 1\",\"pages\":\"455-522\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2021.1971781\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2021.1971781","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个群体模型,其中细胞周期的一部分细胞可能影响另一部分细胞的进展。如果从一个部分到另一个部分的影响或反馈是负的,则模型的模拟几乎总是导致由细胞群形成的多个时间簇。我们研究了参数空间中周期“k-循环”解稳定的区域。稳定区域与子三角形重合,在这些子三角形上某些事件以固定的顺序发生。对于阶为'rs1'的边界子三角形,证明了如果子三角形的指数相对于簇k的数目是相对素数,则k循环周期解是渐近稳定的,否则证明了k循环周期解是中性稳定的。对于负线性反馈,我们证明了参数集的内部被稳定的子三角形覆盖,即对于某个k,一个稳定的k循环解总是存在。我们在数值上观察到,该结果也适用于许多形式的非线性反馈,但在极端情况下可能会失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universality of stable multi-cluster periodic solutions in a population model of the cell cycle with negative feedback.

We study a population model where cells in one part of the cell cycle may affect the progress of cells in another part. If the influence, or feedback, from one part to another is negative, simulations of the model almost always result in multiple temporal clusters formed by groups of cells. We study regions in parameter space where periodic 'k-cyclic' solutions are stable. The regions of stability coincide with sub-triangles on which certain events occur in a fixed order. For boundary sub-triangles with order 'rs1', we prove that the k-cyclic periodic solution is asymptotically stable if the index of the sub-triangle is relatively prime with respect to the number of clusters k and neutrally stable otherwise. For negative linear feedback, we prove that the interior of the parameter set is covered by stable sub-triangles, i.e. a stable k-cyclic solution always exists for some k. We observe numerically that the result also holds for many forms of nonlinear feedback, but may break down in extreme cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信