{"title":"不同孵育温度对斑马鱼胚胎发育速度的控制。","authors":"Hirotaro Urushibata, Kazuaki Sasaki, Eisuke Takahashi, Toshikatsu Hanada, Takafumi Fujimoto, Katsutoshi Arai, Etsuro Yamaha","doi":"10.1089/zeb.2021.0022","DOIUrl":null,"url":null,"abstract":"<p><p>The zebrafish is a valuable model organism that is widely used in studies of vertebrate development. In the laboratory, zebrafish embryonic development is normally carried out at 28.5°C. In this study, we sought to determine whether it was possible to modify the speed of embryonic development through the use of short- and long-term variations in incubation temperature. After incubation at 20°C-32°C, most early-stage embryos survived to the epiboly stage, whereas more than half of the embryos died at <20°C or >32°C. The rate of development differed between embryos incubated at the lowest (18°C) and highest (34°C) temperatures: a difference of 60 min was observed at the 2-cell stage and 290 min at the 1k-cell stage. When blastulae that had developed at 28°C were transferred to a temperature lower than 18°C for one or more hours, they developed normally after being returned to the original 28°C. Analyses using green fluorescent protein-<i>buckyball</i> mRNA and <i>in situ</i> hybridization against <i>vasa</i> mRNA showed that primordial germ cells increase under low-temperature culture; this response may be of use for studies involving heterochronic germ cell transplantation. Our study shows that embryonic developmental speed can be slowed, which will be of value for performing time-consuming, complicated, and delicate microsurgical operations.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":"18 5","pages":"316-325"},"PeriodicalIF":1.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Control of Developmental Speed in Zebrafish Embryos Using Different Incubation Temperatures.\",\"authors\":\"Hirotaro Urushibata, Kazuaki Sasaki, Eisuke Takahashi, Toshikatsu Hanada, Takafumi Fujimoto, Katsutoshi Arai, Etsuro Yamaha\",\"doi\":\"10.1089/zeb.2021.0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The zebrafish is a valuable model organism that is widely used in studies of vertebrate development. In the laboratory, zebrafish embryonic development is normally carried out at 28.5°C. In this study, we sought to determine whether it was possible to modify the speed of embryonic development through the use of short- and long-term variations in incubation temperature. After incubation at 20°C-32°C, most early-stage embryos survived to the epiboly stage, whereas more than half of the embryos died at <20°C or >32°C. The rate of development differed between embryos incubated at the lowest (18°C) and highest (34°C) temperatures: a difference of 60 min was observed at the 2-cell stage and 290 min at the 1k-cell stage. When blastulae that had developed at 28°C were transferred to a temperature lower than 18°C for one or more hours, they developed normally after being returned to the original 28°C. Analyses using green fluorescent protein-<i>buckyball</i> mRNA and <i>in situ</i> hybridization against <i>vasa</i> mRNA showed that primordial germ cells increase under low-temperature culture; this response may be of use for studies involving heterochronic germ cell transplantation. Our study shows that embryonic developmental speed can be slowed, which will be of value for performing time-consuming, complicated, and delicate microsurgical operations.</p>\",\"PeriodicalId\":23872,\"journal\":{\"name\":\"Zebrafish\",\"volume\":\"18 5\",\"pages\":\"316-325\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zebrafish\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2021.0022\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2021.0022","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Control of Developmental Speed in Zebrafish Embryos Using Different Incubation Temperatures.
The zebrafish is a valuable model organism that is widely used in studies of vertebrate development. In the laboratory, zebrafish embryonic development is normally carried out at 28.5°C. In this study, we sought to determine whether it was possible to modify the speed of embryonic development through the use of short- and long-term variations in incubation temperature. After incubation at 20°C-32°C, most early-stage embryos survived to the epiboly stage, whereas more than half of the embryos died at <20°C or >32°C. The rate of development differed between embryos incubated at the lowest (18°C) and highest (34°C) temperatures: a difference of 60 min was observed at the 2-cell stage and 290 min at the 1k-cell stage. When blastulae that had developed at 28°C were transferred to a temperature lower than 18°C for one or more hours, they developed normally after being returned to the original 28°C. Analyses using green fluorescent protein-buckyball mRNA and in situ hybridization against vasa mRNA showed that primordial germ cells increase under low-temperature culture; this response may be of use for studies involving heterochronic germ cell transplantation. Our study shows that embryonic developmental speed can be slowed, which will be of value for performing time-consuming, complicated, and delicate microsurgical operations.
期刊介绍:
Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease.
Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage.
Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community.
TechnoFish features two types of articles:
TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines
TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community
Zebrafish coverage includes:
Comparative genomics and evolution
Molecular/cellular mechanisms of cell growth
Genetic analysis of embryogenesis and disease
Toxicological and infectious disease models
Models for neurological disorders and aging
New methods, tools, and experimental approaches
Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.