α-V70I氨基酸取代的氮酶MoFe蛋白构象平衡揭示了H2形成的机理

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Dmitriy A. Lukoyanov, Zhi-Yong Yang, Krista Shisler, John W. Peters, Simone Raugei, Dennis R. Dean, Lance C. Seefeldt and Brian M. Hoffman
{"title":"α-V70I氨基酸取代的氮酶MoFe蛋白构象平衡揭示了H2形成的机理","authors":"Dmitriy A. Lukoyanov, Zhi-Yong Yang, Krista Shisler, John W. Peters, Simone Raugei, Dennis R. Dean, Lance C. Seefeldt and Brian M. Hoffman","doi":"10.1039/D2FD00153E","DOIUrl":null,"url":null,"abstract":"<p >Study of α-V70I-substituted nitrogenase MoFe protein identified Fe6 of FeMo-cofactor (Fe<small><sub>7</sub></small>S<small><sub>9</sub></small>MoC-homocitrate) as a critical N<small><sub>2</sub></small> binding/reduction site. Freeze-trapping this enzyme during Ar turnover captured the key catalytic intermediate in high occupancy, denoted E<small><sub>4</sub></small>(4H), which has accumulated 4[e<small><sup>?</sup></small>/H<small><sup>+</sup></small>] as two bridging hydrides, Fe2–H–Fe6 and Fe3–H–Fe7, and protons bound to two sulfurs. E<small><sub>4</sub></small>(4H) is poised to bind/reduce N<small><sub>2</sub></small> as driven by mechanistically-coupled H<small><sub>2</sub></small> reductive-elimination of the hydrides. This process must compete with ongoing hydride protonation (HP), which releases H<small><sub>2</sub></small> as the enzyme relaxes to state E<small><sub>2</sub></small>(2H), containing 2[e<small><sup>?</sup></small>/H<small><sup>+</sup></small>] as a hydride and sulfur-bound proton; accumulation of E<small><sub>4</sub></small>(4H) in α-V70I is enhanced by HP suppression. EPR and <small><sup>95</sup></small>Mo ENDOR spectroscopies now show that resting-state α-V70I enzyme exists in two conformational states, both in solution and as crystallized, one with wild type (WT)-like FeMo-co and one with perturbed FeMo-co. These reflect two conformations of the Ile residue, as visualized in a reanalysis of the X-ray diffraction data of α-V70I and confirmed by computations. EPR measurements show delivery of 2[e<small><sup>?</sup></small>/H<small><sup>+</sup></small>] to the E<small><sub>0</sub></small> state of the WT MoFe protein and to both α-V70I conformations generating E<small><sub>2</sub></small>(2H) that contains the Fe3–H–Fe7 bridging hydride; accumulation of another 2[e<small><sup>?</sup></small>/H<small><sup>+</sup></small>] generates E<small><sub>4</sub></small>(4H) with Fe2–H–Fe6 as the second hydride. E<small><sub>4</sub></small>(4H) in WT enzyme and a minority α-V70I E<small><sub>4</sub></small>(4H) conformation as visualized by QM/MM computations relax to resting-state through two HP steps that reverse the formation process: HP of Fe2–H–Fe6 followed by slower HP of Fe3–H–Fe7, which leads to transient accumulation of E<small><sub>2</sub></small>(2H) containing Fe3–H–Fe7. In the dominant α-V70I E<small><sub>4</sub></small>(4H) conformation, HP of Fe2–H–Fe6 is passively suppressed by the positioning of the Ile sidechain; slow HP of Fe3–H–Fe7 occurs first and the resulting E<small><sub>2</sub></small>(2H) contains Fe2–H–Fe6. It is this HP suppression in E<small><sub>4</sub></small>(4H) that enables α-V70I MoFe to accumulate E<small><sub>4</sub></small>(4H) in high occupancy. In addition, HP suppression in α-V70I E<small><sub>4</sub></small>(4H) kinetically unmasks hydride reductive-elimination without N<small><sub>2</sub></small>-binding, a process that is precluded in WT enzyme.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"243 ","pages":" 231-252"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A conformational equilibrium in the nitrogenase MoFe protein with an α-V70I amino acid substitution illuminates the mechanism of H2 formation†\",\"authors\":\"Dmitriy A. Lukoyanov, Zhi-Yong Yang, Krista Shisler, John W. Peters, Simone Raugei, Dennis R. Dean, Lance C. Seefeldt and Brian M. Hoffman\",\"doi\":\"10.1039/D2FD00153E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Study of α-V70I-substituted nitrogenase MoFe protein identified Fe6 of FeMo-cofactor (Fe<small><sub>7</sub></small>S<small><sub>9</sub></small>MoC-homocitrate) as a critical N<small><sub>2</sub></small> binding/reduction site. Freeze-trapping this enzyme during Ar turnover captured the key catalytic intermediate in high occupancy, denoted E<small><sub>4</sub></small>(4H), which has accumulated 4[e<small><sup>?</sup></small>/H<small><sup>+</sup></small>] as two bridging hydrides, Fe2–H–Fe6 and Fe3–H–Fe7, and protons bound to two sulfurs. E<small><sub>4</sub></small>(4H) is poised to bind/reduce N<small><sub>2</sub></small> as driven by mechanistically-coupled H<small><sub>2</sub></small> reductive-elimination of the hydrides. This process must compete with ongoing hydride protonation (HP), which releases H<small><sub>2</sub></small> as the enzyme relaxes to state E<small><sub>2</sub></small>(2H), containing 2[e<small><sup>?</sup></small>/H<small><sup>+</sup></small>] as a hydride and sulfur-bound proton; accumulation of E<small><sub>4</sub></small>(4H) in α-V70I is enhanced by HP suppression. EPR and <small><sup>95</sup></small>Mo ENDOR spectroscopies now show that resting-state α-V70I enzyme exists in two conformational states, both in solution and as crystallized, one with wild type (WT)-like FeMo-co and one with perturbed FeMo-co. These reflect two conformations of the Ile residue, as visualized in a reanalysis of the X-ray diffraction data of α-V70I and confirmed by computations. EPR measurements show delivery of 2[e<small><sup>?</sup></small>/H<small><sup>+</sup></small>] to the E<small><sub>0</sub></small> state of the WT MoFe protein and to both α-V70I conformations generating E<small><sub>2</sub></small>(2H) that contains the Fe3–H–Fe7 bridging hydride; accumulation of another 2[e<small><sup>?</sup></small>/H<small><sup>+</sup></small>] generates E<small><sub>4</sub></small>(4H) with Fe2–H–Fe6 as the second hydride. E<small><sub>4</sub></small>(4H) in WT enzyme and a minority α-V70I E<small><sub>4</sub></small>(4H) conformation as visualized by QM/MM computations relax to resting-state through two HP steps that reverse the formation process: HP of Fe2–H–Fe6 followed by slower HP of Fe3–H–Fe7, which leads to transient accumulation of E<small><sub>2</sub></small>(2H) containing Fe3–H–Fe7. In the dominant α-V70I E<small><sub>4</sub></small>(4H) conformation, HP of Fe2–H–Fe6 is passively suppressed by the positioning of the Ile sidechain; slow HP of Fe3–H–Fe7 occurs first and the resulting E<small><sub>2</sub></small>(2H) contains Fe2–H–Fe6. It is this HP suppression in E<small><sub>4</sub></small>(4H) that enables α-V70I MoFe to accumulate E<small><sub>4</sub></small>(4H) in high occupancy. In addition, HP suppression in α-V70I E<small><sub>4</sub></small>(4H) kinetically unmasks hydride reductive-elimination without N<small><sub>2</sub></small>-binding, a process that is precluded in WT enzyme.</p>\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"243 \",\"pages\":\" 231-252\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/fd/d2fd00153e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/fd/d2fd00153e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

α- v70i取代的氮素酶MoFe蛋白的研究发现,fe7s9moc -高柠檬酸盐(Fe7S9MoC-homocitrate)的Fe6是N2结合/还原的关键位点。在Ar转换过程中,这种酶被冷冻捕获,以高占用率捕获了关键的催化中间体E4(4H),它积累了4[e?/H+]作为两个桥接氢化物,Fe2-H-Fe6和Fe3-H-Fe7,质子与两个硫结合。E4(4H)在机械偶联H2还原消除氢化物的驱动下,可以结合/还原N2。这个过程必须与正在进行的氢化物质子化(HP)相竞争,HP在酶松弛到E2(2H)状态时释放H2,其中含有2[e?/H+]作为氢化物和硫键质子;HP抑制可增强α-V70I中E4(4H)的积累。EPR和95Mo ENDOR光谱显示,α-V70I酶在溶液和结晶状态下存在两种构象状态,一种是野生型(WT)样的FeMo-co,另一种是扰动型的FeMo-co。这反映了α-V70I的x射线衍射数据的再分析和计算证实了Ile残基的两种构象。EPR测量显示2[e?/H+]转变为WT MoFe蛋白的E0态和α-V70I构象,生成含有Fe3-H-Fe7桥接氢化物的E2(2H);另一个2[e]的积累?/H+]生成E4(4H),第二氢化物为Fe2-H-Fe6。QM/MM计算显示,WT酶中的E4(4H)和少数α-V70I E4(4H)构象通过两个HP步骤放松到静息状态,这两个步骤逆转了形成过程:Fe2-H-Fe6的HP,然后是Fe3-H-Fe7的较慢HP,导致含有Fe3-H-Fe7的E2(2H)短暂积累。在α-V70I E4(4H)优势构象中,Fe2-H-Fe6的HP被Ile侧链的定位被动抑制;首先发生Fe3-H-Fe7的慢HP,得到的E2(2H)含有Fe2-H-Fe6。正是这种E4(4H)中的HP抑制使得α-V70I MoFe能够高占用地积累E4(4H)。此外,α-V70I E4(4H)中的HP抑制从动力学上揭示了没有n2结合的氢化物还原消除,这一过程在WT酶中是不存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A conformational equilibrium in the nitrogenase MoFe protein with an α-V70I amino acid substitution illuminates the mechanism of H2 formation†

A conformational equilibrium in the nitrogenase MoFe protein with an α-V70I amino acid substitution illuminates the mechanism of H2 formation†

Study of α-V70I-substituted nitrogenase MoFe protein identified Fe6 of FeMo-cofactor (Fe7S9MoC-homocitrate) as a critical N2 binding/reduction site. Freeze-trapping this enzyme during Ar turnover captured the key catalytic intermediate in high occupancy, denoted E4(4H), which has accumulated 4[e?/H+] as two bridging hydrides, Fe2–H–Fe6 and Fe3–H–Fe7, and protons bound to two sulfurs. E4(4H) is poised to bind/reduce N2 as driven by mechanistically-coupled H2 reductive-elimination of the hydrides. This process must compete with ongoing hydride protonation (HP), which releases H2 as the enzyme relaxes to state E2(2H), containing 2[e?/H+] as a hydride and sulfur-bound proton; accumulation of E4(4H) in α-V70I is enhanced by HP suppression. EPR and 95Mo ENDOR spectroscopies now show that resting-state α-V70I enzyme exists in two conformational states, both in solution and as crystallized, one with wild type (WT)-like FeMo-co and one with perturbed FeMo-co. These reflect two conformations of the Ile residue, as visualized in a reanalysis of the X-ray diffraction data of α-V70I and confirmed by computations. EPR measurements show delivery of 2[e?/H+] to the E0 state of the WT MoFe protein and to both α-V70I conformations generating E2(2H) that contains the Fe3–H–Fe7 bridging hydride; accumulation of another 2[e?/H+] generates E4(4H) with Fe2–H–Fe6 as the second hydride. E4(4H) in WT enzyme and a minority α-V70I E4(4H) conformation as visualized by QM/MM computations relax to resting-state through two HP steps that reverse the formation process: HP of Fe2–H–Fe6 followed by slower HP of Fe3–H–Fe7, which leads to transient accumulation of E2(2H) containing Fe3–H–Fe7. In the dominant α-V70I E4(4H) conformation, HP of Fe2–H–Fe6 is passively suppressed by the positioning of the Ile sidechain; slow HP of Fe3–H–Fe7 occurs first and the resulting E2(2H) contains Fe2–H–Fe6. It is this HP suppression in E4(4H) that enables α-V70I MoFe to accumulate E4(4H) in high occupancy. In addition, HP suppression in α-V70I E4(4H) kinetically unmasks hydride reductive-elimination without N2-binding, a process that is precluded in WT enzyme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信