Cheng-Bing Zhong, Hui Ma, Jia-Jun Wang, Lin-Lin Zhang, Yi-Lun Ying, Rong Wang, Yong-Jing Wan and Yi-Tao Long
{"title":"一种用于高通量单实体分析的超低噪声放大器阵列系统","authors":"Cheng-Bing Zhong, Hui Ma, Jia-Jun Wang, Lin-Lin Zhang, Yi-Lun Ying, Rong Wang, Yong-Jing Wan and Yi-Tao Long","doi":"10.1039/D1FD00055A","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical measurements at the single entity level provide ultra-sensitive tools for the precise diagnosis and understanding of basic biological and chemical processes. By decoding current signatures, single-entity electrochemistry provides abundant information on charges, sizes, shapes, catalytic performances and compositions. The accuracy of single-entity electrochemistry highly relies on advanced instrumentation to achieve the amperometric resolution at the sub-picoampere level and the temporal resolution at the sub-microsecond level. Currently, it is still a challenge for paralleling amplifiers to allow low-noise and high bandwidth single-entity electrochemical measurements. Herein, we developed a low-noise four-channel electrochemical instrumentation that integrates an Au electrode array with amplifiers in the circuit board. With this amplifier array, we achieved a high bandwidth (>100 kHz) electrochemical measurement. The further practical experiments proved the capability of this amplifier array system in acquiring transient signals from both single-molecule detection with an aerolysin nanopore and single Pt nanoparticle catalysis during the dynamic collision process. Paired with appropriate microfluidic array systems, our instrumentation will enable an extraordinarily high-throughput feature for single-entity sensing.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"233 ","pages":" 33-43"},"PeriodicalIF":3.1000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An ultra-low noise amplifier array system for high throughput single entity analysis†\",\"authors\":\"Cheng-Bing Zhong, Hui Ma, Jia-Jun Wang, Lin-Lin Zhang, Yi-Lun Ying, Rong Wang, Yong-Jing Wan and Yi-Tao Long\",\"doi\":\"10.1039/D1FD00055A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrochemical measurements at the single entity level provide ultra-sensitive tools for the precise diagnosis and understanding of basic biological and chemical processes. By decoding current signatures, single-entity electrochemistry provides abundant information on charges, sizes, shapes, catalytic performances and compositions. The accuracy of single-entity electrochemistry highly relies on advanced instrumentation to achieve the amperometric resolution at the sub-picoampere level and the temporal resolution at the sub-microsecond level. Currently, it is still a challenge for paralleling amplifiers to allow low-noise and high bandwidth single-entity electrochemical measurements. Herein, we developed a low-noise four-channel electrochemical instrumentation that integrates an Au electrode array with amplifiers in the circuit board. With this amplifier array, we achieved a high bandwidth (>100 kHz) electrochemical measurement. The further practical experiments proved the capability of this amplifier array system in acquiring transient signals from both single-molecule detection with an aerolysin nanopore and single Pt nanoparticle catalysis during the dynamic collision process. Paired with appropriate microfluidic array systems, our instrumentation will enable an extraordinarily high-throughput feature for single-entity sensing.</p>\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"233 \",\"pages\":\" 33-43\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2022/fd/d1fd00055a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2022/fd/d1fd00055a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
An ultra-low noise amplifier array system for high throughput single entity analysis†
Electrochemical measurements at the single entity level provide ultra-sensitive tools for the precise diagnosis and understanding of basic biological and chemical processes. By decoding current signatures, single-entity electrochemistry provides abundant information on charges, sizes, shapes, catalytic performances and compositions. The accuracy of single-entity electrochemistry highly relies on advanced instrumentation to achieve the amperometric resolution at the sub-picoampere level and the temporal resolution at the sub-microsecond level. Currently, it is still a challenge for paralleling amplifiers to allow low-noise and high bandwidth single-entity electrochemical measurements. Herein, we developed a low-noise four-channel electrochemical instrumentation that integrates an Au electrode array with amplifiers in the circuit board. With this amplifier array, we achieved a high bandwidth (>100 kHz) electrochemical measurement. The further practical experiments proved the capability of this amplifier array system in acquiring transient signals from both single-molecule detection with an aerolysin nanopore and single Pt nanoparticle catalysis during the dynamic collision process. Paired with appropriate microfluidic array systems, our instrumentation will enable an extraordinarily high-throughput feature for single-entity sensing.