Olusola Olafuyi, Mohammad Yaseen Abbasi, Karel Allegaert
{"title":"对乙酰氨基酚在早产儿中基于生理学的药代动力学模型——代谢酶个体发生和减少心输出量的影响","authors":"Olusola Olafuyi, Mohammad Yaseen Abbasi, Karel Allegaert","doi":"10.1002/bdd.2301","DOIUrl":null,"url":null,"abstract":"<p>In preterm neonates, physiologically based pharmacokinetic (PBPK) models are suited for studying the effects of maturational and non-maturational factors on the pharmacokinetics of drugs with complex age-dependent metabolic pathways like acetaminophen (APAP). The aim of this study was to determine the impact of drug metabolising enzymes ontogeny on the pharmacokinetics of APAP in preterm neonates and to study the effect of reduced cardiac output (CO) on its PK using PBPK modelling. A PBPK model for APAP was first developed and validated in adults and then scaled to paediatric age groups to account for the effect of enzyme ontogeny. In preterm neonates, CO was reduced by 10%, 20%, and 30% to determine how this might affect APAP PK in preterm neonates. In all age groups, the predicted concentration-time profiles of APAP were within 5th and 95th percentile of the clinically observed concentration-time profiles and the predicted Cmax and AUC were within 2-folds of the reported parameters in clinical studies. Sulfation accounted for most of APAP metabolism in children, with the highest contribution of 68% in preterm neonates. A reduction in CO by up to 30% did not significantly alter the clearance of APAP in preterm neonates. The model successfully incorporated the ontogeny of drug metabolising enzymes involved in APAP metabolism and adequately predicted the PK of APAP in preterm neonates. A reduction in hepatic perfusion as a result of up to 30% reduction in CO has no effect on the PK of APAP in preterm neonates.</p>","PeriodicalId":8865,"journal":{"name":"Biopharmaceutics & Drug Disposition","volume":"42 9","pages":"401-417"},"PeriodicalIF":1.7000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/bdd.2301","citationCount":"5","resultStr":"{\"title\":\"Physiologically based pharmacokinetic modelling of acetaminophen in preterm neonates—The impact of metabolising enzyme ontogeny and reduced cardiac output\",\"authors\":\"Olusola Olafuyi, Mohammad Yaseen Abbasi, Karel Allegaert\",\"doi\":\"10.1002/bdd.2301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In preterm neonates, physiologically based pharmacokinetic (PBPK) models are suited for studying the effects of maturational and non-maturational factors on the pharmacokinetics of drugs with complex age-dependent metabolic pathways like acetaminophen (APAP). The aim of this study was to determine the impact of drug metabolising enzymes ontogeny on the pharmacokinetics of APAP in preterm neonates and to study the effect of reduced cardiac output (CO) on its PK using PBPK modelling. A PBPK model for APAP was first developed and validated in adults and then scaled to paediatric age groups to account for the effect of enzyme ontogeny. In preterm neonates, CO was reduced by 10%, 20%, and 30% to determine how this might affect APAP PK in preterm neonates. In all age groups, the predicted concentration-time profiles of APAP were within 5th and 95th percentile of the clinically observed concentration-time profiles and the predicted Cmax and AUC were within 2-folds of the reported parameters in clinical studies. Sulfation accounted for most of APAP metabolism in children, with the highest contribution of 68% in preterm neonates. A reduction in CO by up to 30% did not significantly alter the clearance of APAP in preterm neonates. The model successfully incorporated the ontogeny of drug metabolising enzymes involved in APAP metabolism and adequately predicted the PK of APAP in preterm neonates. A reduction in hepatic perfusion as a result of up to 30% reduction in CO has no effect on the PK of APAP in preterm neonates.</p>\",\"PeriodicalId\":8865,\"journal\":{\"name\":\"Biopharmaceutics & Drug Disposition\",\"volume\":\"42 9\",\"pages\":\"401-417\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/bdd.2301\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopharmaceutics & Drug Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2301\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopharmaceutics & Drug Disposition","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2301","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Physiologically based pharmacokinetic modelling of acetaminophen in preterm neonates—The impact of metabolising enzyme ontogeny and reduced cardiac output
In preterm neonates, physiologically based pharmacokinetic (PBPK) models are suited for studying the effects of maturational and non-maturational factors on the pharmacokinetics of drugs with complex age-dependent metabolic pathways like acetaminophen (APAP). The aim of this study was to determine the impact of drug metabolising enzymes ontogeny on the pharmacokinetics of APAP in preterm neonates and to study the effect of reduced cardiac output (CO) on its PK using PBPK modelling. A PBPK model for APAP was first developed and validated in adults and then scaled to paediatric age groups to account for the effect of enzyme ontogeny. In preterm neonates, CO was reduced by 10%, 20%, and 30% to determine how this might affect APAP PK in preterm neonates. In all age groups, the predicted concentration-time profiles of APAP were within 5th and 95th percentile of the clinically observed concentration-time profiles and the predicted Cmax and AUC were within 2-folds of the reported parameters in clinical studies. Sulfation accounted for most of APAP metabolism in children, with the highest contribution of 68% in preterm neonates. A reduction in CO by up to 30% did not significantly alter the clearance of APAP in preterm neonates. The model successfully incorporated the ontogeny of drug metabolising enzymes involved in APAP metabolism and adequately predicted the PK of APAP in preterm neonates. A reduction in hepatic perfusion as a result of up to 30% reduction in CO has no effect on the PK of APAP in preterm neonates.
期刊介绍:
Biopharmaceutics & Drug Dispositionpublishes original review articles, short communications, and reports in biopharmaceutics, drug disposition, pharmacokinetics and pharmacodynamics, especially those that have a direct relation to the drug discovery/development and the therapeutic use of drugs. These includes:
- animal and human pharmacological studies that focus on therapeutic response. pharmacodynamics, and toxicity related to plasma and tissue concentrations of drugs and their metabolites,
- in vitro and in vivo drug absorption, distribution, metabolism, transport, and excretion studies that facilitate investigations related to the use of drugs in man
- studies on membrane transport and enzymes, including their regulation and the impact of pharmacogenomics on drug absorption and disposition,
- simulation and modeling in drug discovery and development
- theoretical treatises
- includes themed issues and reviews
and exclude manuscripts on
- bioavailability studies reporting only on simple PK parameters such as Cmax, tmax and t1/2 without mechanistic interpretation
- analytical methods