胎盘特异性Slc38a2/SNAT2敲低导致小鼠胎儿生长受限。

Owen R Vaughan, Katarzyna Maksym, Elena Silva, Kenneth Barentsen, Russel V Anthony, Thomas L Brown, Sara L Hillman, Rebecca Spencer, Anna L David, Fredrick J Rosario, Theresa L Powell, Thomas Jansson
{"title":"胎盘特异性Slc38a2/SNAT2敲低导致小鼠胎儿生长受限。","authors":"Owen R Vaughan,&nbsp;Katarzyna Maksym,&nbsp;Elena Silva,&nbsp;Kenneth Barentsen,&nbsp;Russel V Anthony,&nbsp;Thomas L Brown,&nbsp;Sara L Hillman,&nbsp;Rebecca Spencer,&nbsp;Anna L David,&nbsp;Fredrick J Rosario,&nbsp;Theresa L Powell,&nbsp;Thomas Jansson","doi":"10.1042/CS20210575","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal growth restriction (FGR) is a complication of pregnancy that reduces birth weight, markedly increases infant mortality and morbidity and is associated with later-life cardiometabolic disease. No specific treatment is available for FGR. Placentas of human FGR infants have low abundance of sodium-coupled neutral amino acid transporter 2 (Slc38a2/SNAT2), which supplies the fetus with amino acids required for growth. We determined the mechanistic role of placental Slc38a2/SNAT2 deficiency in the development of restricted fetal growth, hypothesizing that placenta-specific Slc38a2 knockdown causes FGR in mice. Using lentiviral transduction of blastocysts with a small hairpin RNA (shRNA), we achieved 59% knockdown of placental Slc38a2, without altering fetal Slc38a2 expression. Placenta-specific Slc38a2 knockdown reduced near-term fetal and placental weight, fetal viability, trophoblast plasma membrane (TPM) SNAT2 protein abundance, and both absolute and weight-specific placental uptake of the amino acid transport System A tracer, 14C-methylaminoisobutyric acid (MeAIB). We also measured human placental SLC38A2 gene expression in a well-defined term clinical cohort and found that SLC38A2 expression was decreased in late-onset, but not early-onset FGR, compared with appropriate for gestational age (AGA) control placentas. The results demonstrate that low placental Slc38a2/SNAT2 causes FGR and could be a target for clinical therapies for late-onset FGR.</p>","PeriodicalId":519494,"journal":{"name":"Clinical Science (London, England : 1979)","volume":" ","pages":"2049-2066"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410983/pdf/","citationCount":"17","resultStr":"{\"title\":\"Placenta-specific Slc38a2/SNAT2 knockdown causes fetal growth restriction in mice.\",\"authors\":\"Owen R Vaughan,&nbsp;Katarzyna Maksym,&nbsp;Elena Silva,&nbsp;Kenneth Barentsen,&nbsp;Russel V Anthony,&nbsp;Thomas L Brown,&nbsp;Sara L Hillman,&nbsp;Rebecca Spencer,&nbsp;Anna L David,&nbsp;Fredrick J Rosario,&nbsp;Theresa L Powell,&nbsp;Thomas Jansson\",\"doi\":\"10.1042/CS20210575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fetal growth restriction (FGR) is a complication of pregnancy that reduces birth weight, markedly increases infant mortality and morbidity and is associated with later-life cardiometabolic disease. No specific treatment is available for FGR. Placentas of human FGR infants have low abundance of sodium-coupled neutral amino acid transporter 2 (Slc38a2/SNAT2), which supplies the fetus with amino acids required for growth. We determined the mechanistic role of placental Slc38a2/SNAT2 deficiency in the development of restricted fetal growth, hypothesizing that placenta-specific Slc38a2 knockdown causes FGR in mice. Using lentiviral transduction of blastocysts with a small hairpin RNA (shRNA), we achieved 59% knockdown of placental Slc38a2, without altering fetal Slc38a2 expression. Placenta-specific Slc38a2 knockdown reduced near-term fetal and placental weight, fetal viability, trophoblast plasma membrane (TPM) SNAT2 protein abundance, and both absolute and weight-specific placental uptake of the amino acid transport System A tracer, 14C-methylaminoisobutyric acid (MeAIB). We also measured human placental SLC38A2 gene expression in a well-defined term clinical cohort and found that SLC38A2 expression was decreased in late-onset, but not early-onset FGR, compared with appropriate for gestational age (AGA) control placentas. The results demonstrate that low placental Slc38a2/SNAT2 causes FGR and could be a target for clinical therapies for late-onset FGR.</p>\",\"PeriodicalId\":519494,\"journal\":{\"name\":\"Clinical Science (London, England : 1979)\",\"volume\":\" \",\"pages\":\"2049-2066\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410983/pdf/\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Science (London, England : 1979)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1042/CS20210575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Science (London, England : 1979)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20210575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

胎儿生长受限(FGR)是一种妊娠并发症,可降低出生体重,显著增加婴儿死亡率和发病率,并与晚年心脏代谢疾病有关。目前尚无针对FGR的特殊治疗方法。人类FGR婴儿胎盘中钠偶联中性氨基酸转运体2 (Slc38a2/SNAT2)丰度较低,该转运体可为胎儿提供生长所需的氨基酸。我们确定了胎盘Slc38a2/SNAT2缺陷在受限胎儿生长发育中的机制作用,并假设胎盘特异性Slc38a2敲低导致小鼠FGR。利用小发夹RNA (shRNA)的慢病毒转导囊胚,我们在不改变胎儿Slc38a2表达的情况下实现了59%的胎盘Slc38a2的敲低。胎盘特异性Slc38a2敲低会降低近期胎儿和胎盘体重、胎儿活力、滋养层质膜(TPM) SNAT2蛋白丰度,以及绝对和体重特异性胎盘对氨基酸运输系统A示踪剂14c -甲基氨基异丁酸(MeAIB)的摄取。我们还在一个定义明确的长期临床队列中测量了人类胎盘SLC38A2基因表达,发现SLC38A2表达在迟发性FGR中下降,而在早发性FGR中,与适当胎龄(AGA)对照胎盘相比没有下降。结果表明,低胎盘Slc38a2/SNAT2可导致FGR,并可能成为迟发性FGR的临床治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Placenta-specific Slc38a2/SNAT2 knockdown causes fetal growth restriction in mice.

Placenta-specific Slc38a2/SNAT2 knockdown causes fetal growth restriction in mice.

Placenta-specific Slc38a2/SNAT2 knockdown causes fetal growth restriction in mice.

Placenta-specific Slc38a2/SNAT2 knockdown causes fetal growth restriction in mice.

Fetal growth restriction (FGR) is a complication of pregnancy that reduces birth weight, markedly increases infant mortality and morbidity and is associated with later-life cardiometabolic disease. No specific treatment is available for FGR. Placentas of human FGR infants have low abundance of sodium-coupled neutral amino acid transporter 2 (Slc38a2/SNAT2), which supplies the fetus with amino acids required for growth. We determined the mechanistic role of placental Slc38a2/SNAT2 deficiency in the development of restricted fetal growth, hypothesizing that placenta-specific Slc38a2 knockdown causes FGR in mice. Using lentiviral transduction of blastocysts with a small hairpin RNA (shRNA), we achieved 59% knockdown of placental Slc38a2, without altering fetal Slc38a2 expression. Placenta-specific Slc38a2 knockdown reduced near-term fetal and placental weight, fetal viability, trophoblast plasma membrane (TPM) SNAT2 protein abundance, and both absolute and weight-specific placental uptake of the amino acid transport System A tracer, 14C-methylaminoisobutyric acid (MeAIB). We also measured human placental SLC38A2 gene expression in a well-defined term clinical cohort and found that SLC38A2 expression was decreased in late-onset, but not early-onset FGR, compared with appropriate for gestational age (AGA) control placentas. The results demonstrate that low placental Slc38a2/SNAT2 causes FGR and could be a target for clinical therapies for late-onset FGR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信