{"title":"发育中的肾元及其覆盖组织之间的相互模式-重新考虑寻找受损肾形成留下的痕迹的正当理由。","authors":"Will W Minuth","doi":"10.1186/s40348-021-00120-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The impairment of nephrogenesis can cause the termination of nephron formation in preterm and low birth weight babies. This leads to oligonephropathy with severe health consequences in later life. Although many clinical parameters are known, surprisingly little information is available regarding the initial damage on the developing nephron. Equally astounding, the first morphological data regarding the specifics of nephron formation in the nephrogenic zone of the fetal human kidney during late gestation has only been published within the past few years. In this context, it was observed that each stage of nephron anlage is surrounded by a specific set of tissues. Although highly relevant for the normal progress of nephron formation, the mutual patterning has not been systematically described.</p><p><strong>Results: </strong>To contribute, the different stages of nephron anlage in the nephrogenic zone of the fetal human kidney during late gestation were screened by the optical microscope and documented by images. Following this, magnifications (28 × 18 cm) were produced to trace the contours of the developing nephron and its covering tissues. The resulting sketches, almost true to scale, were scanned, edited, and processed by a design program. As a base, first the individual position, size, and shape of the nephrogenic niche, pretubular aggregate, renal vesicles, comma- and S-shaped bodies are presented. Secondly, their structural relations to the renal capsule, collecting duct ampulla, perforating radiate artery, and expanding interstitium are shown. Third of all, the focus is on less considered configurations, such as site-specific approximation, local distancing, punctual adhesion, integration, separation, delamination, formation of congruent and divergent surfaces, and folding and opening of interstitial clefts.</p><p><strong>Conclusions: </strong>The present contribution illuminates the mutual patterning between the developing nephron and its covering tissues. It is indispensable to know about the microanatomical relations, in order to identify whether the noxae impairing nephrogenesis targets only the developing nephron or also its covering tissues as interacting and controlling instances.</p>","PeriodicalId":74215,"journal":{"name":"Molecular and cellular pediatrics","volume":"8 1","pages":"9"},"PeriodicalIF":2.4000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371049/pdf/","citationCount":"3","resultStr":"{\"title\":\"The mutual patterning between the developing nephron and its covering tissues-valid reasons to rethink the search for traces left by impaired nephrogenesis.\",\"authors\":\"Will W Minuth\",\"doi\":\"10.1186/s40348-021-00120-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The impairment of nephrogenesis can cause the termination of nephron formation in preterm and low birth weight babies. This leads to oligonephropathy with severe health consequences in later life. Although many clinical parameters are known, surprisingly little information is available regarding the initial damage on the developing nephron. Equally astounding, the first morphological data regarding the specifics of nephron formation in the nephrogenic zone of the fetal human kidney during late gestation has only been published within the past few years. In this context, it was observed that each stage of nephron anlage is surrounded by a specific set of tissues. Although highly relevant for the normal progress of nephron formation, the mutual patterning has not been systematically described.</p><p><strong>Results: </strong>To contribute, the different stages of nephron anlage in the nephrogenic zone of the fetal human kidney during late gestation were screened by the optical microscope and documented by images. Following this, magnifications (28 × 18 cm) were produced to trace the contours of the developing nephron and its covering tissues. The resulting sketches, almost true to scale, were scanned, edited, and processed by a design program. As a base, first the individual position, size, and shape of the nephrogenic niche, pretubular aggregate, renal vesicles, comma- and S-shaped bodies are presented. Secondly, their structural relations to the renal capsule, collecting duct ampulla, perforating radiate artery, and expanding interstitium are shown. Third of all, the focus is on less considered configurations, such as site-specific approximation, local distancing, punctual adhesion, integration, separation, delamination, formation of congruent and divergent surfaces, and folding and opening of interstitial clefts.</p><p><strong>Conclusions: </strong>The present contribution illuminates the mutual patterning between the developing nephron and its covering tissues. It is indispensable to know about the microanatomical relations, in order to identify whether the noxae impairing nephrogenesis targets only the developing nephron or also its covering tissues as interacting and controlling instances.</p>\",\"PeriodicalId\":74215,\"journal\":{\"name\":\"Molecular and cellular pediatrics\",\"volume\":\"8 1\",\"pages\":\"9\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371049/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and cellular pediatrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40348-021-00120-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and cellular pediatrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40348-021-00120-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
The mutual patterning between the developing nephron and its covering tissues-valid reasons to rethink the search for traces left by impaired nephrogenesis.
Background: The impairment of nephrogenesis can cause the termination of nephron formation in preterm and low birth weight babies. This leads to oligonephropathy with severe health consequences in later life. Although many clinical parameters are known, surprisingly little information is available regarding the initial damage on the developing nephron. Equally astounding, the first morphological data regarding the specifics of nephron formation in the nephrogenic zone of the fetal human kidney during late gestation has only been published within the past few years. In this context, it was observed that each stage of nephron anlage is surrounded by a specific set of tissues. Although highly relevant for the normal progress of nephron formation, the mutual patterning has not been systematically described.
Results: To contribute, the different stages of nephron anlage in the nephrogenic zone of the fetal human kidney during late gestation were screened by the optical microscope and documented by images. Following this, magnifications (28 × 18 cm) were produced to trace the contours of the developing nephron and its covering tissues. The resulting sketches, almost true to scale, were scanned, edited, and processed by a design program. As a base, first the individual position, size, and shape of the nephrogenic niche, pretubular aggregate, renal vesicles, comma- and S-shaped bodies are presented. Secondly, their structural relations to the renal capsule, collecting duct ampulla, perforating radiate artery, and expanding interstitium are shown. Third of all, the focus is on less considered configurations, such as site-specific approximation, local distancing, punctual adhesion, integration, separation, delamination, formation of congruent and divergent surfaces, and folding and opening of interstitial clefts.
Conclusions: The present contribution illuminates the mutual patterning between the developing nephron and its covering tissues. It is indispensable to know about the microanatomical relations, in order to identify whether the noxae impairing nephrogenesis targets only the developing nephron or also its covering tissues as interacting and controlling instances.