{"title":"用最小的事件信号进行连续的上市后顺序安全监控。","authors":"Martin Kulldorff, Ivair R Silva","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The CDC Vaccine Safety Datalink project has pioneered the use of near real-time post-market vaccine safety surveillance for the rapid detection of adverse events. Doing weekly analyses, continuous sequential methods are used, allowing investigators to evaluate the data near-continuously while still maintaining the correct overall alpha level. With continuous sequential monitoring, the null hypothesis may be rejected after only one or two adverse events are observed. In this paper, we explore continuous sequential monitoring when we do not allow the null to be rejected until a minimum number of observed events have occurred. We also evaluate continuous sequential analysis with a delayed start until a certain sample size has been attained. Tables with exact critical values, statistical power and the average times to signal are provided. We show that, with the first option, it is possible to both increase the power and reduce the expected time to signal, while keeping the alpha level the same. The second option is only useful if the start of the surveillance is delayed for logistical reasons, when there is a group of data available at the first analysis, followed by continuous or near-continuous monitoring thereafter.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363220/pdf/nihms-1067124.pdf","citationCount":"0","resultStr":"{\"title\":\"Continuous Post-Market Sequential Safety Surveillance with Minimum Events to Signal.\",\"authors\":\"Martin Kulldorff, Ivair R Silva\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The CDC Vaccine Safety Datalink project has pioneered the use of near real-time post-market vaccine safety surveillance for the rapid detection of adverse events. Doing weekly analyses, continuous sequential methods are used, allowing investigators to evaluate the data near-continuously while still maintaining the correct overall alpha level. With continuous sequential monitoring, the null hypothesis may be rejected after only one or two adverse events are observed. In this paper, we explore continuous sequential monitoring when we do not allow the null to be rejected until a minimum number of observed events have occurred. We also evaluate continuous sequential analysis with a delayed start until a certain sample size has been attained. Tables with exact critical values, statistical power and the average times to signal are provided. We show that, with the first option, it is possible to both increase the power and reduce the expected time to signal, while keeping the alpha level the same. The second option is only useful if the start of the surveillance is delayed for logistical reasons, when there is a group of data available at the first analysis, followed by continuous or near-continuous monitoring thereafter.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363220/pdf/nihms-1067124.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuous Post-Market Sequential Safety Surveillance with Minimum Events to Signal.
The CDC Vaccine Safety Datalink project has pioneered the use of near real-time post-market vaccine safety surveillance for the rapid detection of adverse events. Doing weekly analyses, continuous sequential methods are used, allowing investigators to evaluate the data near-continuously while still maintaining the correct overall alpha level. With continuous sequential monitoring, the null hypothesis may be rejected after only one or two adverse events are observed. In this paper, we explore continuous sequential monitoring when we do not allow the null to be rejected until a minimum number of observed events have occurred. We also evaluate continuous sequential analysis with a delayed start until a certain sample size has been attained. Tables with exact critical values, statistical power and the average times to signal are provided. We show that, with the first option, it is possible to both increase the power and reduce the expected time to signal, while keeping the alpha level the same. The second option is only useful if the start of the surveillance is delayed for logistical reasons, when there is a group of data available at the first analysis, followed by continuous or near-continuous monitoring thereafter.