{"title":"潜在细胞景观的低变异性对基于相互作用的方法在大量样本中进行DNA甲基化的细胞特异性分析的性能产生了不利影响。","authors":"Richard Meier, Emily Nissen, Devin C Koestler","doi":"10.1515/sagmb-2021-0004","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical methods that allow for cell type specific DNA methylation (DNAm) analyses based on bulk-tissue methylation data have great potential to improve our understanding of human disease and have created unprecedented opportunities for new insights using the wealth of publicly available bulk-tissue methylation data. These methodologies involve incorporating interaction terms formed between the phenotypes/exposures of interest and proportions of the cell types underlying the bulk-tissue sample used for DNAm profiling. Despite growing interest in such \"interaction-based\" methods, there has been no comprehensive assessment how variability in the cellular landscape across study samples affects their performance. To answer this question, we used numerous publicly available whole-blood DNAm data sets along with extensive simulation studies and evaluated the performance of interaction-based approaches in detecting cell-specific methylation effects. Our results show that low cell proportion variability results in large estimation error and low statistical power for detecting cell-specific effects of DNAm. Further, we identified that many studies targeting methylation profiling in whole-blood may be at risk to be underpowered due to low variability in the cellular landscape across study samples. Finally, we discuss guidelines for researchers seeking to conduct studies utilizing interaction-based approaches to help ensure that their studies are adequately powered.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9125800/pdf/sagmb-20-3-sagmb-2021-0004.pdf","citationCount":"2","resultStr":"{\"title\":\"Low variability in the underlying cellular landscape adversely affects the performance of interaction-based approaches for conducting cell-specific analyses of DNA methylation in bulk samples.\",\"authors\":\"Richard Meier, Emily Nissen, Devin C Koestler\",\"doi\":\"10.1515/sagmb-2021-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Statistical methods that allow for cell type specific DNA methylation (DNAm) analyses based on bulk-tissue methylation data have great potential to improve our understanding of human disease and have created unprecedented opportunities for new insights using the wealth of publicly available bulk-tissue methylation data. These methodologies involve incorporating interaction terms formed between the phenotypes/exposures of interest and proportions of the cell types underlying the bulk-tissue sample used for DNAm profiling. Despite growing interest in such \\\"interaction-based\\\" methods, there has been no comprehensive assessment how variability in the cellular landscape across study samples affects their performance. To answer this question, we used numerous publicly available whole-blood DNAm data sets along with extensive simulation studies and evaluated the performance of interaction-based approaches in detecting cell-specific methylation effects. Our results show that low cell proportion variability results in large estimation error and low statistical power for detecting cell-specific effects of DNAm. Further, we identified that many studies targeting methylation profiling in whole-blood may be at risk to be underpowered due to low variability in the cellular landscape across study samples. Finally, we discuss guidelines for researchers seeking to conduct studies utilizing interaction-based approaches to help ensure that their studies are adequately powered.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9125800/pdf/sagmb-20-3-sagmb-2021-0004.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2021-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2021-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low variability in the underlying cellular landscape adversely affects the performance of interaction-based approaches for conducting cell-specific analyses of DNA methylation in bulk samples.
Statistical methods that allow for cell type specific DNA methylation (DNAm) analyses based on bulk-tissue methylation data have great potential to improve our understanding of human disease and have created unprecedented opportunities for new insights using the wealth of publicly available bulk-tissue methylation data. These methodologies involve incorporating interaction terms formed between the phenotypes/exposures of interest and proportions of the cell types underlying the bulk-tissue sample used for DNAm profiling. Despite growing interest in such "interaction-based" methods, there has been no comprehensive assessment how variability in the cellular landscape across study samples affects their performance. To answer this question, we used numerous publicly available whole-blood DNAm data sets along with extensive simulation studies and evaluated the performance of interaction-based approaches in detecting cell-specific methylation effects. Our results show that low cell proportion variability results in large estimation error and low statistical power for detecting cell-specific effects of DNAm. Further, we identified that many studies targeting methylation profiling in whole-blood may be at risk to be underpowered due to low variability in the cellular landscape across study samples. Finally, we discuss guidelines for researchers seeking to conduct studies utilizing interaction-based approaches to help ensure that their studies are adequately powered.