存储边缘网络数据(SEND):一个数据和性能驱动的边缘存储框架。

Proceedings. IEEE INFOCOM Pub Date : 2021-05-01 Epub Date: 2021-07-26 DOI:10.1109/infocom42981.2021.9488804
Adrian-Cristian Nicolaescu, Spyridon Mastorakis, Ioannis Psaras
{"title":"存储边缘网络数据(SEND):一个数据和性能驱动的边缘存储框架。","authors":"Adrian-Cristian Nicolaescu,&nbsp;Spyridon Mastorakis,&nbsp;Ioannis Psaras","doi":"10.1109/infocom42981.2021.9488804","DOIUrl":null,"url":null,"abstract":"<p><p>The number of devices that the edge of the Internet accommodates and the volume of the data these devices generate are expected to grow dramatically in the years to come. As a result, managing and processing such massive data amounts at the edge becomes a vital issue. This paper proposes \"Store Edge Networked Data\" (SEND), a novel framework for in-network storage management realized through data repositories deployed at the network edge. SEND considers different criteria (e.g., data popularity, data proximity from processing functions at the edge) to intelligently place different categories of raw and processed data at the edge based on system-wide identifiers of the data context, called <i>labels</i>. We implement a data repository prototype on top of the Google file system, which we evaluate based on real-world datasets of images and Internet of Things device measurements. To scale up our experiments, we perform a network simulation study based on synthetic and real-world datasets evaluating the performance and trade-offs of the SEND design as a whole. Our results demonstrate that SEND achieves data insertion times of 0.06ms-0.9ms, data lookup times of 0.5ms-5.3ms, and on-time completion of up to 92% of user requests for the retrieval of raw and processed data.</p>","PeriodicalId":93365,"journal":{"name":"Proceedings. IEEE INFOCOM","volume":"2021 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341071/pdf/nihms-1693208.pdf","citationCount":"11","resultStr":"{\"title\":\"Store Edge Networked Data (SEND): A Data and Performance Driven Edge Storage Framework.\",\"authors\":\"Adrian-Cristian Nicolaescu,&nbsp;Spyridon Mastorakis,&nbsp;Ioannis Psaras\",\"doi\":\"10.1109/infocom42981.2021.9488804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The number of devices that the edge of the Internet accommodates and the volume of the data these devices generate are expected to grow dramatically in the years to come. As a result, managing and processing such massive data amounts at the edge becomes a vital issue. This paper proposes \\\"Store Edge Networked Data\\\" (SEND), a novel framework for in-network storage management realized through data repositories deployed at the network edge. SEND considers different criteria (e.g., data popularity, data proximity from processing functions at the edge) to intelligently place different categories of raw and processed data at the edge based on system-wide identifiers of the data context, called <i>labels</i>. We implement a data repository prototype on top of the Google file system, which we evaluate based on real-world datasets of images and Internet of Things device measurements. To scale up our experiments, we perform a network simulation study based on synthetic and real-world datasets evaluating the performance and trade-offs of the SEND design as a whole. Our results demonstrate that SEND achieves data insertion times of 0.06ms-0.9ms, data lookup times of 0.5ms-5.3ms, and on-time completion of up to 92% of user requests for the retrieval of raw and processed data.</p>\",\"PeriodicalId\":93365,\"journal\":{\"name\":\"Proceedings. IEEE INFOCOM\",\"volume\":\"2021 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341071/pdf/nihms-1693208.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE INFOCOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/infocom42981.2021.9488804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/infocom42981.2021.9488804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

预计未来几年,互联网边缘容纳的设备数量和这些设备产生的数据量将急剧增长。因此,在边缘管理和处理如此庞大的数据量成为一个至关重要的问题。本文提出了“存储边缘网络数据”(SEND),这是一种通过部署在网络边缘的数据存储库来实现网络内存储管理的新框架。SEND考虑不同的标准(例如,数据受欢迎程度,数据与边缘处理功能的接近程度),以基于数据上下文的系统范围标识符(称为标签)智能地在边缘放置不同类别的原始和处理数据。我们在Google文件系统之上实现了一个数据存储库原型,我们基于真实世界的图像数据集和物联网设备测量值对其进行评估。为了扩大我们的实验规模,我们基于合成和现实世界的数据集进行了网络模拟研究,以评估SEND设计的整体性能和权衡。我们的结果表明,SEND实现了数据插入时间为0.06ms-0.9ms,数据查找时间为0.5ms-5.3ms,并且可以按时完成高达92%的用户请求,以检索原始和处理过的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Store Edge Networked Data (SEND): A Data and Performance Driven Edge Storage Framework.

The number of devices that the edge of the Internet accommodates and the volume of the data these devices generate are expected to grow dramatically in the years to come. As a result, managing and processing such massive data amounts at the edge becomes a vital issue. This paper proposes "Store Edge Networked Data" (SEND), a novel framework for in-network storage management realized through data repositories deployed at the network edge. SEND considers different criteria (e.g., data popularity, data proximity from processing functions at the edge) to intelligently place different categories of raw and processed data at the edge based on system-wide identifiers of the data context, called labels. We implement a data repository prototype on top of the Google file system, which we evaluate based on real-world datasets of images and Internet of Things device measurements. To scale up our experiments, we perform a network simulation study based on synthetic and real-world datasets evaluating the performance and trade-offs of the SEND design as a whole. Our results demonstrate that SEND achieves data insertion times of 0.06ms-0.9ms, data lookup times of 0.5ms-5.3ms, and on-time completion of up to 92% of user requests for the retrieval of raw and processed data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信