将基因表达和突变与临床数据相结合的两阶段方法改善了骨髓增生异常综合征和卵巢癌的生存预测。

Journal of bioinformatics and genomics Pub Date : 2016-09-01 Epub Date: 2016-09-15 DOI:10.18454/jbg.2016.1.1.2
Yan Li, Xinyan Zhang, Tomi Akinyemiju, Akinyemi I Ojesina, Jeff M Szychowski, Nianjun Liu, Bo Xu, Nengjun Yi
{"title":"将基因表达和突变与临床数据相结合的两阶段方法改善了骨髓增生异常综合征和卵巢癌的生存预测。","authors":"Yan Li, Xinyan Zhang, Tomi Akinyemiju, Akinyemi I Ojesina, Jeff M Szychowski, Nianjun Liu, Bo Xu, Nengjun Yi","doi":"10.18454/jbg.2016.1.1.2","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Many traditional clinical prognostic factors have been known for cancer for years, but usually provide poor survival prediction. Genomic information is more easily available now which offers opportunities to build more accurate prognostic models. The challenge is how to integrate them to improve survival prediction. The common approach of jointly analyzing all type of covariates directly in one single model may not improve the prediction due to increased model complexity and cannot be easily applied to different datasets.</p><p><strong>Results: </strong>We proposed a two-stage procedure to better combine different sources of information for survival prediction, and applied the two-stage procedure in two cancer datasets: myelodysplastic syndromes (MDS) and ovarian cancer. Our analysis suggests that the prediction performance of different data types are very different, and combining clinical, gene expression and mutation data using the two-stage procedure improves survival prediction in terms of improved concordance index and reduced prediction error.</p><p><strong>Availability and implementation: </strong>The two-stage procedure can be implemented in BhGLM package which is freely available at http://www.ssg.uab.edu/bhglm/.</p><p><strong>Contact: </strong>nyi@uab.edu.</p>","PeriodicalId":93306,"journal":{"name":"Journal of bioinformatics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351588/pdf/nihms-819593.pdf","citationCount":"0","resultStr":"{\"title\":\"A two-stage approach for combining gene expression and mutation with clinical data improves survival prediction in myelodysplastic syndromes and ovarian cancer.\",\"authors\":\"Yan Li, Xinyan Zhang, Tomi Akinyemiju, Akinyemi I Ojesina, Jeff M Szychowski, Nianjun Liu, Bo Xu, Nengjun Yi\",\"doi\":\"10.18454/jbg.2016.1.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Many traditional clinical prognostic factors have been known for cancer for years, but usually provide poor survival prediction. Genomic information is more easily available now which offers opportunities to build more accurate prognostic models. The challenge is how to integrate them to improve survival prediction. The common approach of jointly analyzing all type of covariates directly in one single model may not improve the prediction due to increased model complexity and cannot be easily applied to different datasets.</p><p><strong>Results: </strong>We proposed a two-stage procedure to better combine different sources of information for survival prediction, and applied the two-stage procedure in two cancer datasets: myelodysplastic syndromes (MDS) and ovarian cancer. Our analysis suggests that the prediction performance of different data types are very different, and combining clinical, gene expression and mutation data using the two-stage procedure improves survival prediction in terms of improved concordance index and reduced prediction error.</p><p><strong>Availability and implementation: </strong>The two-stage procedure can be implemented in BhGLM package which is freely available at http://www.ssg.uab.edu/bhglm/.</p><p><strong>Contact: </strong>nyi@uab.edu.</p>\",\"PeriodicalId\":93306,\"journal\":{\"name\":\"Journal of bioinformatics and genomics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351588/pdf/nihms-819593.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioinformatics and genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18454/jbg.2016.1.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioinformatics and genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18454/jbg.2016.1.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/9/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机癌症的许多传统临床预后因素已被人们熟知多年,但通常无法提供较好的生存预测。基因组信息现在更容易获得,这为建立更准确的预后模型提供了机会。目前的挑战是如何将这些因素整合起来,以改善生存预测。常见的方法是在一个单一模型中直接联合分析所有类型的协变量,但这种方法可能无法提高预测效果,因为会增加模型的复杂性,而且不容易应用于不同的数据集:我们提出了一种两阶段程序,以更好地结合不同来源的生存预测信息,并将该两阶段程序应用于两个癌症数据集:骨髓增生异常综合征(MDS)和卵巢癌。我们的分析表明,不同数据类型的预测性能大相径庭,而使用两阶段程序将临床、基因表达和突变数据结合起来,可以提高生存预测的一致性指数并减少预测误差:两阶段程序可在 BhGLM 软件包中实现,该软件包可在 http://www.ssg.uab.edu/bhglm/.Contact: nyi@uab.edu 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A two-stage approach for combining gene expression and mutation with clinical data improves survival prediction in myelodysplastic syndromes and ovarian cancer.

A two-stage approach for combining gene expression and mutation with clinical data improves survival prediction in myelodysplastic syndromes and ovarian cancer.

A two-stage approach for combining gene expression and mutation with clinical data improves survival prediction in myelodysplastic syndromes and ovarian cancer.

A two-stage approach for combining gene expression and mutation with clinical data improves survival prediction in myelodysplastic syndromes and ovarian cancer.

Motivation: Many traditional clinical prognostic factors have been known for cancer for years, but usually provide poor survival prediction. Genomic information is more easily available now which offers opportunities to build more accurate prognostic models. The challenge is how to integrate them to improve survival prediction. The common approach of jointly analyzing all type of covariates directly in one single model may not improve the prediction due to increased model complexity and cannot be easily applied to different datasets.

Results: We proposed a two-stage procedure to better combine different sources of information for survival prediction, and applied the two-stage procedure in two cancer datasets: myelodysplastic syndromes (MDS) and ovarian cancer. Our analysis suggests that the prediction performance of different data types are very different, and combining clinical, gene expression and mutation data using the two-stage procedure improves survival prediction in terms of improved concordance index and reduced prediction error.

Availability and implementation: The two-stage procedure can be implemented in BhGLM package which is freely available at http://www.ssg.uab.edu/bhglm/.

Contact: nyi@uab.edu.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信